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CHAPTER 1
INTRODUCTION

The primary purpose of the project was to study, experimentally,
the proposed simplified theory. The results of this effort are
reported in Volume 1 of this report. Considerable additional effort
was devoted in other directions in support of the primary activity.

In the course of searching for experimental data in the
literature an extensive Bibliography was compiled. It is included
in the Appendix of this Volume. The basis of all of the pile
formulas was examined and a review of the results of this study is
reported in Chapter 2.

A computer program was prepared to simulate a pile during
driving., The pile was modeled by lumped masses interconnected by
springs. In this manner all parts of the driving apparatus could
be included in the model and soil forces applied along the pile.

An initial velocity is then imparted to the upper mass and the
motion of the system can be expected to duplicate the dynamic

pile behavior. The primary difficulty with such a system lies with
the inadequate knowledge of pile-soil interface forces. A
correlation was made between dynamic field measurements and the
mathematical model results. The effect of a change in dynamic
parameters was studied. This work is presented in Chapter 3.

The pile dynamics problem was also approached treating the



pile as a continous elastic rod. This problem becomes quite difficult
because of the complicated boundary conditions along the rod. Only
a beginning was made with this approach. The results are given in

Chapter 4.



CHAPTER 2

LITERATURE STUDY

A portion of the project was concerned with a literature
investigation. The primary purpose of this work was to obtain
experimental data which could be of use in verifying any theory
which might be proposed. A bibliography of the papers reviewed is
given in the Appendix. A review of all dynamic driving formulas
was also made and will be discussed briefly. A more detailed

discussion is found in reference 2.1,

2.1 Pile Formulas

Three general approaches have been used traditionally in
predicting the bearing capacity of piles. They can be classified
under the general headings: static formulas, dynamic formulas and
methods using impact and wave theory,

The static formulas all rely on information regarding
soil characteristics. Thus, based on investigation of soil
sampies the attempt is made to predict the friction strength between
the pile wall and the soil. Also, prediction of point resistance is
made. From this information pile capacity is predicted. It
should be emphasized that the static formulas depend on a knowledge
of soil behavior taken from the science of soil mechanics. They
have their use in design but in cohesive soils where strength

development is slow and measurements made during initial driving are

unreliable,



There are many dynamic formulas in use today. They are
based on both empirical and theoretical considerations and are
obtained from energy relationships in which certain assumptions are
made. The many and varied assumptions which have been made have
led to considerable controversy. However, some assumptions must be
made to give the formulas practical usefulness. The dynamic
equations will be discussed with the primary goal of emphasizing the
physical meaning of the assumptions.

There are only five basic types of dynamic pile-driving

formulas. A1l of them can be represented by the formula

Wh = Rds + 2.1

where Rd is the dynamic resistance, h is the height of fall of
hammer, in inches, S is the penetration of pile per blow, in inches,
G is all of the energy losses at the time of impact and W is the
weight of striking parts of hammer. The basis of this equation is
best seen from the following discussion of the work diagrams shown
in Figure 2.1, The diagram in Figure 2.1(a} represents the work
expended in moving the pile a distance S against a uniform resistance
R'. If no energy losses occurred, this work would be equal to the
energy available at the time of impact. This diagram is not
representative of practical conditions because there will always be
an energy dissipation due to temporary elastic compression in the
pile and surrounding media, and in all Tikelihood, varying

resistance to penetration. Figures 2.1(b) and 2.1(c) consider



elastic compression and two types of varying resistance. The
difference between ideal and actual pile behavior is apparent by
comparing the shaded area of Figure 2.1(a) superimposed on Figures
2.1(b) and 2.1{c). The resistance in Figure 2.1(b) is similar to
the resistance behavior in sand. The resistance increases as the
sand is compacted by the moving pile. In this case, the resistance
increases with penetration depth until it reaches a value of R",

In Figure 2.1(c), the behavior is similar to that expected in a clay
soil. The initial value of the resistance (R"*) will be high, but
will decrease with depth of penetration to a constant value of R",
The resistance R" can be related to the resistance R' for the ideal
case by a numerical constant C".

R = €' R 2.2

where R" is the final resistance under one hammer blow, C" is the
coefficient dependent upon resistance characteristics, and R' is
the average value of a variabie resistance to penetratiocn under
one blow. The value of C" depends on the characteristics of the
resistance force between the pile and the soil. If the resistance
behavior is like that of Figure 2.1(b), the value of C" would be
more than one, Similarly, C" would be Tess than one for a resistance
behavior shown in Figure 2.1(¢). The triangular area SBD
represents the energy loss due to elastic deformation. The
temporary elastic compression at impact, which causes the energy
toss, is represented by the distance SS'. From this discussion it

is apparent that the equation,



Wh = R'S 2.3
must be modified to account for energy loss {adding a vatue Q)
and variable resistance (multiplying R's by C".) The equation in
modified form is:

Wh = C" R'S + Q 2.4

These work diagrams could be used as an approach to deter-
mining the dynamic bearing capacity of a pile. The disadvantage
to using such an approach is that accurate field measurements of
the penetration and resistance are required.

Cummings (Ref. 2.7) classified all dynamic pile equations
into five types. A.M. Wellington's equation, the Engineering-News
formula, was developed from a work diagram similar to that discussed
above. This is one of Cummings' five general types of equations.
Wellington suggested an energy loss of O,IRd. This formula is

expressed as follows:

Wh=RS+ 0.1TR

d d 2.5

Using the value k instead of 0.1 to account for different energy
losses with different driving conditions, as previously done for the

Engineering~News formula, results in the equation:

Wh = RS + de 2.6

d
where 2k is the total rebound of pile hammer.
This equation is in error because there is no valid

basis to justify this term.



The second type of dynamic formula given by Cummings is one

in which Who represents the lost energy.

Wh = R,S + who 2.7

d
where hO is the maximum height of fall of hammer at which penetration
per blow is still zero {S = 0). The units are in inches. This
formula has been attributed to F. Kreuter but it was published by
G. J. Morrison, in 1868. [t has been unsétisfactory because it has
been impossible to obtain consistent values of ho‘

The Weisback formula can be obtained from Cummings' third
basic type of dynamic pile-driving formula in which the energy loss
s caused by temporary elastic compression of the pile.

R42L
thRdS“i““Z"A"E"— 2.8

where L is the length of pile as driven in inches, A is the average
cross-sectional area of pile and E is the modulus of elasticity of
pile.

This equation neglects other energy losses and is based
on the assumption that the dynamic energy Toss can be computed by
static theory. The last term in Equation 2.8 represents the potential
energy of strain in a compressed strut subject to a static load of
amount Rd at each end. In the first place, it is well known that
the elastic compression under impact is something entirely different
from the elastic compression due to a static force. In the second

place, the resistance is scarcely ever applied entirely at the pile



point, There is usually some resistance along the sides of the pile
and in many cases practically all of the resistance is on the sides
and the point resistance is negligible. Accordingly, it is not to
be expected that the energy loss due to temporary elastic compression
can be computed with any reascnable degree of accuracy by means of
an expression taken from static theory, without modification, for
use in a dynamic problem.

If the enerqy loss is attributed to impact, which assumes
that the pile problem is considered to be an impact problem which
can be solved by Newton's impact theory, the fourth type of

dynamic pile-driving formula will result.

2
Wh = RS + wp RUI=n")

d WP 2.9

where n is the coefficient of restitution, and p is the weight of
pile. If n equals zero (assuming perfectly inelastic impact),

the formula will become Eytelwein's formula, published in 1820. 1If
n equals one (assuming perfectly elastic impact), the formula will
become the Sanders eguation.

It is a fallacy in the belief that a dynamic pile-driving
formula can be formulated using Newton's theory of simple impact.
It is apparent from Newton's own words that he did not intend his
theory to be applied to pile driving. The theory is applicable to
all elastic bodies" ... except where parts of the bodies are

damaged in the collision or where they suffer some such extension

as occurs under the strokes of a hammer." (Ref. 2.2) It is further



seen from a description of the experiments made by Newton, from
which he formulated his theory, that the impact experienced in pile
driving is not of the same character as the impact realized in his
experiments. Newton made the following statement in his
explanation of his third Taw concerning impact. Two coliiding
bodies will react according to the rules of behavior provided"...
the bodies are not hindered by any other fmpediments." {Ref. 2.2).
This statement, along with the fact that there was no restraint
which caused elastic distortion in his experiments, rule out pile
driving as a problem which can be solved using his theories on
impact since the soil surrounding the pile offers resistance. Pile
driving is more than a two-body problem because of the constraints
introduced by the surrounding media. Therefore, Newton's impact
theory, using the coefficient of restitution cannot be applied to

pile driving because it is restricted to two-body problems.

The . "complete" pile-driving formula, is Cummings' fifth
type of eguation, 2 5
' yd R, L R.,~L’
_ . P(1-n") d -, d L
Wh = RdS + Wh ( TP i (ZAE + SATE T K) 2.10

where L, A', and E'are defined the same as L, A, E except that they
refer to the driving cap, and K is the energy loss caused by the
temporary elastic compression of the soil. This eguation is
invalid for the same reasons that Equations 2.8 and 2.9 are
invalid. It is deceijving in that it appears to have taken every-
thing into account, but in actuality some of the energy losses are

considered twice. This results from inciuding the two types of
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lTosses (impact and elastic) in one equation.

Other dynamic formulas can be similarly discussed. It will
be found that they can be classified as one of Cummings' five basic
types. A formula which is placed in a certain group will have the
same limitations as that set.

The accuracy of the many pile formulas has been the
subject of considerable study. Since they have generally fallen
into disrepute their unretiability will not be discussed further.

An extensive investigation of-a large number of common pile formulas
was conducted in connection with the project and is reported in

reference 2.3,

2.2 Longitudinal Impact and Wave Theory as Applied to Pile Driving

A pile, during driving, acts not as a body which is instane-

ously compressed at impact, but as a structure which transmits

i

response waves (stress waves, velocity waves, etc.) throughout its
Tength. St. Venant and Boussinesg were among the first to examine
the problems of longitudinal wave transmission and impact. This
was over 100 years ago. They examingd two types of Tongitudinal
impact. The first was that of a rod struck longitudinaily at one
end and fixed at the other. The second case considered a rod
which was similarly struck, but free at the opposite end. The
results obtained from the analysis of the rod restrained at one

end can be applied to a pile since it encounters resistance from

the surrounding media.
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Apparently I[saacs (Ref. 2.4) was the first to associate
wave action with pile driving. His method of analysis was similar
to that followed by St. Venant and Boussinesg. He used boundary
conditions which were more in iine with the physical characteristics
of the pile. Other work has since been done by Fox, (Ref. 2.5)
Glanville, Grime, Fox and Davies, {Ref. 2.6) and others.

If it is assumed that the rod with a fixed end, examined
by St. Venant and Boussinesq, is a pile, their assumptions are:

1. The sides of the pile are free and there is no side
friction which would affect the stress waves running up and down
the pile.

2. Stress waves in the hammer may be neglected.

3. There are no flexural vibrations of the pile.

4, The pile behaves as a lineariy elastic rod.

5, The hammer strikes directly on the head of the pite
and the surfaces of contact are two ideal smooth parallel planes.

6. The Tower end of the pile is fixed,

The theory does not inciude the effect of dissipation of
energy due to propagation losses in the pite. The validity of these
assumptions, as applied to pile driving is as follows:

The assumptions of negiecting skin friction and propagation
tosses are on the safe side. This is because the friction forces
aiong the side of a pile tend to reduce the amplitude of the stress
waves causing lower stresses in the pile. Similarly, propagation

Tosses tend to reduce the stresses. Therefore, these assumptions
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will cause the theoretical stress state to be higher than in the
actual pile,

The assumption of considering the hammer as a rigid body
can be regarded as a realistic one because it is usually a short
heavy block of steel.

[t is always possible for a pile to fail by flexural
buckling under a static or dynamic Toad. However, the bending
stresses and strain energy of bending calculated to occur during
driving, using values for the eccentricity of the hammer blow and
misalignment of the pile which are within the allowable range for
an actual pile driving job, are small when compared to other
stresses and the energy which the hammer provides at impact.

Assumption four is valid for piles which are of one
section and one material. This assumption is not valid for composite
piles or piltes which are made up of two or more separate sections.

A cushion or driving cap is provided between the hammer and
pile head in practically all driving cases. These items reduce the
stresses in the pile. Using assumption five, which neglects the
influence of these objects in the analysis, will result in higher
theoretical stresses than in the actual case,

The pile point does not remain fixed, In practice, the
point of the pile will be resisted by a force which is more or less
elastic in character. The elastic reaction will induce smaller
stresses in the pile than the force which is required to cause zero

displacement at the point.
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Isaacs approached the pile problem in a manner similar to
the method used by St. Venant and Boussinesq on the impact problem.
The difference was the assumptions made in the boundary conditions
and initial conditions. Fox (Ref. 2.5} presented the main points of
IsaacS‘ theory in a paper concerned with stresses in piles during
driving. A review of this article is included in reference 2.3,

The assumptions made by Isaacs were similar to those listed
above except:

1. It is assumed that the capblock packing remains at a
constant thickness after the maximum stress is reached, unless the
stress caused by a refiected wave from the foot exceeds this
maximum value. If this occurs the packing is further compressed
until a new maximum stress is reached. This process is repeated
for other reflected waves.

2. It is assumed that the toe of the pile will not move
until the compressive stress at the point of the pile is equal to p.
When this stress equals p, the toe will begin to move until the
velocity of the point again equals zero. The compressive stress at
the point is assumed to remain at the value of p during movement.
when movement of the toe stops, the stress will become smaller,
Movement can again occur if the reflected waves from the head of
the pile cause the compressive stress to equal p.

Returning to the rod with the fixed end, the theory of
St. Venant and Boussinesq gives the following equation for the

maximum compressive stress which occurs at the fixed end when the
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ratio of the striking body to the weight of the rod is less than

five:
_ 2EV ~2(P/W)
Prax = % (1 + e L) 2.11
where p is the maximum compressive stress, E is the modulus of

max
elasticity of the rod, ¢ is the velocity of stress in the rod, V

is the impact velocity of striking body, P is the weight of rod,
and W is the weight of striking body. The stress calculated from
this formula will be considerably higher than the maximum stress
which occurs in the actual pile for reasons previously discussed.

In reference 2.5 and 2.6 it was desired to obtain
equations for stress response which gave a closer approximation to
actual stresses.

On the basis of these modified assumptions, a complete
solution of the differential equation was developed. This complete
solution includes Tong and complicated mathematical expressions so
that its use for a practical problem would involve laborious
numerical calculations. In order to avoid this wherever possible the
engineers of the British Building Research Board developed approximate
sotutions for certain specific conditions.

For one of these approximate solutions the maximum stress
in the pile is given by

- LY W 2.12

where T is the stiffness constant of cushion block, and L is the
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length of pile.
Because of the approximations involved in the derivation

of Equation 2.12, its use is limited to heavy hammers, soft

cushion blocks and short piles that are driven against a

practically rigid bottom. The approximate accuracy of Equation 2.12

can be determined from the expression

P

1+E)

W1+

which represents the ratio of terms neglected to terms retained.
The smaller the value of the ratio the greater will be the accuracy
of the approximation.

The articles which have been mentioned in this discussion
are not the only ones which examine the pile with regard to
Tongitudinal impact and wave response theory. Further information
1s given in References 2.7, 2.8 and 2.9.

The dynamic response studies discussed above have as
their goal the determination of stresses in the pile during driving.
They do not attempt to contribute information on bearing capacity.

Forehand and Reese (Ref. 2.10) have made use of Smith's
analysis in their investigation of the possibility that the wave
equation can be used to predict the ultimate bearing capacity of
a pile., In this study they attempted to establish values for the
ground quake, ground damping, and the distribution of side and point

resistance for certain types of soils. This was accomplished by the
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correlation of pile driving records with load test results given in
published reports. They conclude that additional research fis
necessary, but that the wave equation method of analysis promises to
become an accurate and general method to be used in conjunction

with other factors for predicting the ultimate bearing capacity of

a pile from its dynamic behavior under the last hammer blow for all

combinations of driving equipment, pile, and types of soil.



CHAPTER 3

LUMPED MASS PILE ANALYSIS

It is possible to use the wave equation to analyze a pile
during driving. This approach has great potential, but the
complicated boundary and initial conditons cause the equations
obtained to be of such a complex nature that their solution is
difficult in most practical cases, To arrive at a solution which
can be of practical use, or sometimes, to obtain a solution, certain
assumptions must be made to simplify the problem. Smith {Ref. 3.1)
has presented a method of analysis which attempts to overcome the
difficulity in the mathematics. The formulation of the problem by
Smith is such that a numerical solution to the wave equation is
obtained. If the finite difference relation for the wave equation
is compared to the formulas of Smith, it is seen that they are one
of the same. This fact has been shown in Reference 2.3.

In Smith's analysis, the pile is divided into a series
of finite elements. Each element has a given weight and stiffness.
Using these values, a mathematical model is constructed composed of
masses and springs. The additional pile components (ram, capblock,
pile cap, cushion, core or mandrel, etc.} are similarly represented,
The force~displacement characteristics of the springs can be
defined mathematically allowing them to portray the actual physical
behavior of the pile as closely as possible. Resisting forces can

be introduced into the problem to represent the behavior of the

17
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surrounding media. By giving the ram an initial velocity, the
time history of the pile motion can be studied. Figure 3.1 shows
a sketch of the model used for the pile. In reference 2.3 a
compiete discussion is given of the method used.

The wave equation, solved by a numerical approach, shows
promise of being a possible means by which a relationship between
the dynamic and static resistance of the surrounding media can be
obtained. From this relation, the ultimate bearing capacity
could be predicted. It also provides a convenient tool for studying
the effect of the variation of dynamic parameters on the response
of the pile.

A computer program was developed based on the analysis
of Smith, and recommendations made by Samson, Hirsch, and Lowery.
(Ref. 3.2). This program was used to simulate pile behavior so
that the effect of certain parameters on the dynamic response of the
pile could be investigated.

The computer program was used to simulate the response of
a pile on which selected measurements were made. The results are
used to demonstrate the possibility of correlating field
measurements and computer results, and to show certain parameter
affects.

The pile investigated was a 12-inch steel test pile
located at the interchange of the Willow Freeway and the Clark
Freeway in Cleveland, Ohio. It is referred to as Pile No. 113

North Pier in Table 5.5, Volume 1 of this vreport. It had a hollow
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circular cross section with an area of 9.82 square inches, and a
total length of 63.5 feet, of which 53 feet was below the ground
surface.

The hammer used was a Vulcan "0" single acting steam-air-
open type. It had a rated striking energy of 24,375 ft-lbs. The
weight of the ram is 7500 pounds.

It was not possible to obtain the stiffness of the capblock
and the weight of the pile cap. Realistic values were assumed for
these unknowns after an examination of the Titerature. The pile
cap was assumed to have a weight of 700 pounds. The stiffness of
the capblock was taken to be 2,000,000 pounds per inch. In Figure
3.2, the actual pile and the mathematical model assumed are shown.

The acceleration and strain at a point four feet below
the top of the pile were electronically recorded for the last
hammer blows on the pile. The parts of the response which were
of interest are shown in Figures 3.3 and 3.4. The acceleration
curve was graphically integrated to obtain the velocity curve shown
in Figure 3.5.

The pile driving log and load test results recorded by
Ohio Department of Highways personnel were ohbtained for this pile.
The pile driving record for the last four feet is given in Table 3.1,
The exact value of the set at the time the electronic measurements
were taken is not known more exactly than the average value. A
load-settlement curve is given in Figure 3.6. The failure load as

defined by the Ohio Department of Highways, obtained from this test

was ninety-nine tons.
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The results from the computer program were compared to
those obtained in the field to see if the program gave similar
results. Values for the soil parameters, quake, Q as shown in
Figure 3.7, and damping, J, for point and J' for side, along with

a percentage of side resistance, were assumed using values recommended

by Forehand and Reese (Ref. 2,10), The values were used as follows:

J = 0,15 Note: The relation recommended by
Forehand and Reese between side and
Jd' = 0.05 point damping was assumed:
J' = (1/3}4.
G =0.1

31% of the ultimate resistance is side resistance,
Taking different values for the ultimate resistance, Ru
in Figure 3,7, and obtaining the corresponding set in inches per
blow, & curve can be shows (Figure 3.8.) Once the curve is obtained,
the ultimate resistance corresponding to the set of the last blow
on the pile can be determined from the curve. This value corresponds
to the static resistance of the pile. Tt was found that the pile had
an ultimate resistance of 115 tons when the set was 0.44 inch per
blow. This value compares closely to the value of 99 tons found
in the load test particularly since the 9¢ tons value is not the
ultimate load but the Ohio Department of Highways yield Toad.

The velocity, strain, and acceleration response obtained
from the computer solution with an ultimate resistance of 200,000

pounds and a set of 0,598 inch per blow, were compared to the

respective responses obtained in the field (Figures 3.9, 3.10, and
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3.11). This set is slightly higher than the indicated set from
the pile driving record. It is not known exactly what the set was
at the time of recording and the average value of set near the end
of driving did show fluctuation between 0.545 and 0.444 inch per
blow, and since these are preliminary results, and certain pile
component characteristics are not definitely known the results are
within the Timits of the accuracy of the measurements.

Upon comparison, it was found that the electronically
recorded reaction curves lagged behind the computer obtained responses.
[t should be noted that the response corresponding to the segment
containing the point at which the electronic measurements were made
is compared to the electronically measured behavior. A likely
explanation is that the capblock had a non-linear stiffness. That
is, at first the stiffness was small but as the capblock was
compressed the stiffness increased. This type of capblock would
cause an initial wave to preceed the main response wave. If the
electronically recorded behavior curves are shifted in time so
that the Jag is eliminated, close agreement is obtained.

In the strain diagram the computer obtained behavior
Curve intially agrees closely to the response curve found
electronically in the field, However, they separate after approxima-
tely nine milliseconds with the compressive strain increasing for
the numerically obtained response and decreasing for the
electronically measured behavior curve,

In both the velocity and acceleration diagrams, it was
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found that the peak response due to the initial impact determined
by the computer solution was considerably higher than the indicated
peak found electronically. There are several possible explanations
for this., The energy at impact could have been smaller than that
given by the manufacturer. The values assuned for the unknown

pile cap weight and, or, capblock stiffness could have caused the
difference in the peak values. A non-linear stiffness could have
reduced the energy availabie for the main response wave recorded.

A possible explanation why the behavior curves found
numerically and electronically for the strain were similar in the
beginning, and yet the peak response due to initial impact in both
the velocity and acceleration diagrams varied considerably for the
computer based solution and electronically measured response is
that the segment (mass) points have the same relative movement no
matter what the initial peak velocity and acceleration is.

The damping factors were changed to try to get the strain
diagram for the computer solution to agree with the electronically
recorded response in the area where the two separate (after nine
mitliseconds). It was found that with an increase in damping the
curves were further apart, but with a decrease in the damping
factors the strain found by the numerical solution began to
decrease in the area of disagreement. It should be noted that the
side and point damping were always increased or decreased in the
same proportion. The two curves showed good agreement when the

damping factors were very small (J = 0.015, J' = 0.005), but the set
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had increased considerably. The permanent set was not determined
for this case, but it is known that it is over 0.83 inch per blow and
is probably over 1.0 inch per blow. The results from which these
conclusions are drawn are shown in Figures 3.12 to 3.14. It should
be noted that the results obtained by electronic measurements in
the field are shown on these graphs even though the permanent sets
are not similar. The respective electronically obtained curves
are included with each response diagram given in this paper to
serve as an aid in comparison.

Using these new values for the damping factors (J = 0.015,
J' = 0,005) and the same value for the quake (Q = 0.1) and ultimate
resistance distribution (side resistance 31% of the ultimate resist-
ance), the value for the ultimate resistance was changed to reduce
the set. The set versus ultimate resistance curve for this case is
shown in Figure 3.15. It is seen from this curve that the ultimate
resistance corresponding to a seft of 0.44 inch per blow is 156 tons.
This is high compared to the failure load found from the Toad test
(99 tons). Comparing the strain curve for this case obtained from
the resuits having the closest set to 0.44 inch per blow, it was
found that the curve found from the computer solution once again
diverged from the electronically recorded curve above nine
milliseconds {(Figure 3.16, set = 0.48 inch per blow). With this
unsatisfactory resuit, it was decided to decrease the ultimate
resistance and increase the quake. The static load test results

were used to determine a relationship between uitimate resistance
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and quake. It was found that for a load increment of nine tons there
always was an initial reading showing a settlement of .31 inch.
Theretfore, from the load tests the ratio of RU/Q was 580,000 pounds
per inch.

In Figure 3.17, the resulting curve for a gquake of 0.4 inch
and an ultimate resistance of 200,000 pounds is shown (Ru/Q - 500,000
pounds per inch}, It is seen that spring 2, which represents the
stiffness of element 3 that contains the point at which the
electronic measurements were made, has zero strain when the ram
rebounds off the pile. This is because the spring between the
first mass and the pile cap can't carry tension. The strain in
spring 3 is also plotted in this figure because it is the nearest
spring to the element containing the peint at which the electronic
measurements were made that has the same properties of the point
where the field measurements were taken {can carry tension, etc.).
It is seen that the strain response closely follows the curve
found by electronic measurements in the region where they once
diverged. The set obtained (set - 0.582 inch per blow) is not
unreasonable. It should also be noted that the peak acceleration
and velocity due to initial impact are still higher for the computer
solution than the electronically measured response (Figures 3.18 and
3.19).

From this study made of parameter influence on the strain
response, and the response character obtained from the solution

based on Smith's analysis compared to the electronically measured
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response, it can be concluded that the computer program can be used
to simulate pile behavior.

The magnitude of the resistance offered by the ground on
the pile changes the shape of the response. For the different
case studied, which had different resistance characteristics, the
first part of the response curves were similar. They become
different when the value of the resistance becomes large enough to
influence the acceleration of the segments.

Decreasing the damping along the side and at the point in
direct proportion tc one another, while maintaining all other
parameters, results in a decrease in strain on the pile element in
the region following the response due to initial impact.

Increasing the percentage of side resistance resulted in a
strain response curve for the pile segment which had no sharp
increases or decreases in strain shortly after the initial impact.
The strain remained in a relatively small high range compared to the
distribution having a lower percentage of side resistance.

Decreasing the damping factors for the side and point in
direction proportion and maintaining the quake increases the set
for the same ultimate resistance.

Decreasing the damping along the side and point of the pile
in direction proportion causes a decrease in the rate at which the
velocity of a point on the pile decreases after the initial impact.

Additional cases as well as different types of piles must
be examined to be certain that these conclusions are true generally

and not for the specific problem considered.



CHAPTER 4
ELEMENTARY THEORETICAL MODELS OF AN ELASTIC PILE

Although elaborate and much more accurate models of pile
driving already exist (and some are discussed in Chiapter 3 of this
Yolume)}, it is very useful to construct a simplified theoretical
model which has at least qualitative value. Such a model aids in
visualizing and assessing the pile driving effects to be seen in more
complicated models or in the field,

4,17 FEquation of Motion. First Model

Consider Fig. 4.1, The pile is assumed to be a uniform bar
of length L and constant cross=-section area A. The ground resistance
will, intentionally in this first model, be drastically oversimpli-
fied to a single force at the lower tip of the pile (point bearing
only.) The driving force will be considered a single function of
time applied at the top of the pile. These forces will be designated
by F1(t) at the top and Fz(t) at the bottom, as indicated in the
figqure,

Let x be the distance measured along the undisturbed or
rigid pile, Let £ be the elastic displacement of the point x away
from its undisturbed position. Let X be the overall displacement
of the x coordinate system; X is thus like a riqgid body displace~
ment of the whole pile.

We next derive the equation for the force equilibrium of an

26
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element of the pile; see Figure 4.2,

An element of length dx will be acted upon by a positive (tensile)

stress o at x and a positive tensile stress of o + %% dx at x + dx.

The corresponding forces are obtained by assuming these stresses to be
uniformly distributed aver the section area A, The strain at x is

g = %%ug so that assuming elastic material of the pile with a modulus
of elasticity of E:

= [ 35
o E 3% 4,1

If p s the density of the pile material, then equating elastic and

gravitational to inertial forces in the x-direction leads to the

equation
3o _ a
A Fra dx + pAg dx = pAdx =S (X + £) 4,2
X at2

In view of the elastic relation of stress to strain this simplifies

to 32 ae as
EA =25+ oAg = oA (X 4+ ) 4.3
ax

or, if ¢ = v Efp is the speed of sound in the pile;

52 ] 1 (X - q)
R SER A~ = m—nzn E = sk, :
x4 c c? bed

This is the wave equation of the pile., It is subject to the

boundary conditions



| W i WIT, . .
§§°I " iﬁjﬁ} aE, = iﬁﬁtMLKﬂ) 4.5
R N EA 5 8x .y BA

which state that the strain is compressive under the forces F=E and
F2 at top and bottom, respectively. The assumption is wade through-
out that stresses are uniformly distributed over any cross-sectional
area,
4.2 General Solutions of the Equation of Motion, First Model

To obtain a solution to equation 4.4 under conditions
4.5 it will be assumed that the pite initially has no displacements
or velocity (quiescent)., Taking Laplace transforms (L & = £, etc.)

of the quantities in equations 4.4 and 4.5 yields

ae _pt T, (pz X - 1.6
dx® ¢ ¢ ’

de m‘Fl(t)

dx L, R

o5 “~f}(t-4c) 4.7
dx x=1. i EK

Since ¥ is a function of time only, and not of x, the solution

of equations 4.6 and 4.7 is

- C .Fl 4 L Fa ety DX
£ = ;~:;;HWEEf Fr GOSN T e | £OSA S
o z -
¥y .
o {:‘_’,4 o N E.),S. - X L I
BOEK SR T p3 4.8

Since the top {x=0) of the pile will be singled out for

examination (this is the point where, in the field, strain and
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acceleration measurements are made), the value of x in equation

4,8 can be set equal to zero.

pile-top displacement £ + X is
F1
)13

The inversion of equation 4

- c
p sinh EémL

£+

x=0

First are stated four alternati

Thus the transform of the

q

abirhea

L_F [+
cosh %? - Eﬁ'} >

.9 takes several forms.

ve general solutions:

t
0
+ B |t DHlt-e B h(tee 2 L LT Rteo) de
0
- %ﬁ; Jt [H(t~- .&E) + H{t-1- 9-&[1) oo ] Fale) de
0
o 2/2
(X + €) a0 ) ) F () de ot
Jo
+ %ﬁ' [t [H{ %%) + H(T-%é) + ... Fi{t-t) de
)
SB[t B vonee By LT Ry (te) d
Jg
t
(X o) o] Fale) xiglt=r) de | F () x'pp(t-r) de
0 0
+ Ot

4.9

4,10a

4.10b

4.10c
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" t
(X + &) ixﬁU“ Fyt(n) Xp1 (t=t) dv + Fa' (1) sz(tﬁT) de
0 i}
+ gt2/2 4.10d

In the above solutions H{t-7) represents the Heaviside
unit step function rising from zero to unit value at t =1 ; Xp1
and Xpo @re the solutions of equation 4.9 when respectively Fi=H(t)
Fo= 0 or Fy = 0, F, = H(t), i.e. the responses of the pile to
unit step inputs at either end; primes indicate first derivatives
with respect to the arguments indicated,

To render equations (4.10c) and (4.70d) more explicit,

consider the case Fy = Fyq H(t), F, = 0, In this case F, =

F1°/p and equation (4,9) becomes

o F
(T +7) I = myﬂﬂ*ﬁﬁw“w{ 10 cosh qu + ﬂa 4,11
x=p P30 pL'ﬁﬂf p3
But
Sgiﬂmzésﬁ 12l - 2pL  _4pt _ EpL
pL c te ¢ +te ¢ +...] 4,12
sinh ¢

Hence, multiplying by p?:

h & R
aptL £
+e ¢ + ...] + % E

* Note that xR}’ and sz’are also respectively the responses

to s-function inputs {impulses) at top and bottom.
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Inverting yields the acceleration:

v F
(€ + %) a%§[um+ztﬁm bye o(t “)+“€]+q

x=0

vwhere 8{t - ¢) is the Dirac delta function (or "infinite spike"

at t = ),
The first integral of this expresses the velocity:

- ﬁrﬂ}t)+ﬂﬁbzh+ﬁ< 3Ly + .J}+%

and & final integration yields the displacement:

= Fioc :
Froxpy = (g + X){xaﬂz - [t + 2 [H(t- -2{-»:5)(1.;«»= %)

e ey ] el

This exhibits the explicit form which Xn1 takes on for
use in equations (4.10¢c) or {4.10d); Xpo May be obtained
analogously.

It is interesting for illustrative purposes to select
one of the simple solutions of equation 4.14, 4,15 or 4.16 and

to compare it with the corresponding result obtained with the

assumption that the pile is a rigid body (incapable of g-motion),

To this end, 4.15 is selected and compared with results of the
following brief rigid-<body analysis.
Let m be the mass pAL of the pile. Then, under & unit

step forece F{t) = Fyp H{t):

4,14

4,15



mi=F, (t)+myg 4,17a

or
; _ Fio H(t) + g 4,170
5

Integration yields:

LI 4.18
m

The results of equations 4.15 and 4,18 for velocity at the top of the
pile are rendered non-dimensional by dividing velocity, V, by the

factor FEO; they are then plotted as shown in Figure 4.3, where
phc
gravity effects are neglected.

An interpretation of the physical significance of Figure
4,3 lends insight into the mechanism of pile response, Under the
sudden application of a constant force at the top, the rigid pile,
Jumping to a finite acceleration, increases velocity at a linear
rate, On the other hand, the elastic pile responds in steps
separated by the travel time 2L/c¢ of a wave down the length L and
back at sound velocity ¢. The "average" of the elastic velocity
response, however, is seen to be the rigid body velocity response,

Figure 4.3 serves as a basic form from which a number of
solutions can be constructed. This fact is implicit in equation
4.10c or 4,10d since a general variety of functions F(t) can be
constructed from H(t), but simple qualitative reasoning using
Figure 4.3 suffices to get a number of instructive results very
easily.

Suppose for example that F;(t) consists of a square
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puise of duration T and height Fy4, i.e, in the Tanguage used

aboves

F(t) = [H{t) - H(t-T)] Fyiy 4,19

To obtain the velocities then it suffices to subtract, from the
given results, results similar to thase of Fiqure 4,3, starting
at £t = T, Taking for illustrative purposes. T = L/c vields
Figure 4.4

In this figure the rigid body and elastic body results
are seen to be rather dissimilar, but still the rigid body
resuits are a kind of "average” of the elastic body results. The
short force pulse at the top, of duration T, is seen to traverse
the pite and reflect back to the top in intervals of %%@ the time
required for wave passage at sonic speed, It is to be emphasized
that in the actual case, successive reflections would probably
be damped out, so that the figure represents only a hypothetical
situation,

Ify, referring again to Figure 4.4, we replace the single
top force pulse by a half sine wave pulse of the same amplitude
and duration (taking F, = 0), the results are as shown in Figure
4.5,

Further cases can be developed, for exampie assuming
various rules of action governing the force F,(t) at the lower
tip., One possible situation is discussed here, Since, in fact,

the force F,{t) is a soil reaction force, it would be reascnable

to assume that this force does not arise until t = L/¢, i.e., until
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the top stress wave hits the bottom, Assuming for examp1e that

L]

Fypo(t)
(| a(t) dt=1) 4,20
0

¢]

Fig 8 (L)

1

Fo (t) = Fap 6&(t- %J

i,e. that the two forces are hammer blows of "infinite height and
infinitesmal duration® {in fact that they are merely devices for
transfer of units of mementum) the result for the transform of

£+ Xatx =0 from equation 4.9 is

op - ARt fpb
= ﬁﬁﬁ [?1 +2 (e e Che CFe)IFp

2L _dpL o 6pl
- 2[9 c + c +e C a..] F20 + (J/p3 4.21

T+ )

x=0

of for the transform of the velogit

Yoo _epL _4pL _GpL
p(e Y)i _c [Fro+2(Fip = Fao)le C+e Cve °
=0 FA

+g-o)] +g/p2 4,2?

This yields for the velocity:

cFio
{¢ + X) 0‘ “@ﬁ“ s(t) + (F10“F20)[5 t‘““d + 6 (t )
X=
+ ,..]+ at 4,23
and for the displacement:
cf 10
(g + X) . 2¢ 4L

x=0" “EE H(t) + &x (F10-F20) [H(t“ “”’ + H(t- e

+o..] + gtd/2 4,24
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This can h? conveniently plotted (taking 2F, = Fyy
AL
arbitrarily) if 3ﬁ3~15 used to reduce the amplitude to a
dimensionless quantity. The result is given Fiqure 4.6. The

rigid body result

F F
2 10 20
K= How e M) - e [HE=E) (t5)] 4.25

is also indicated in this fiqure,
4.3 Equation of Motion. Second Model

Because of the relatively poor simulation of reality in
the first model, a second one is introduced in Fiqure 4.7.
In this case, the soil resistance will be simulated by a
uniformly distributed force fr(Ebc/fts) along the pile, where

Fom Ky Ky (KFE) + Ky (X+€)2 % ., 4.26

i.e. fr may consist of a frictional force Ky, a viscous force

Kzfi+%) and higher order resistive forces in powers of the
absolute pile velocity, Actually, in what follows, only the K,
and K, terms will be retained.

Again assume a unifofm pile of cross section, A, which

receives an impulsive blow FG s§(t) on top (Figure 4.7},

oA dx (X +£) = A %%vdx - f, dx 4.27

This Teads to the following equation of motion:

2 v b 2 &
Qw%-w gé-(x *E)-B{X+E)=a 4.28
X

2
where ¢ = E/p and



K,

Quiescent initial conditions are assumeds

X+ ¢ =

Taking Laplace transforms of equation 4.28 yields

d?e

dx?

P

where

0

A £ =

5(+§;ﬁ0 (t =

L4y ¥
P

2 2
xo= Beogp

2

a)

The general solution of equation 4.37 is

£ = Ay cosh ax + By sinh ax = =P =

ATp

The boundary conditions on the pile are

ag . FodtY)
5x AE
atfox= 0
which transform to
Y “AE

X=0

Using conditions 4.34 in equation 4.32 yields the solution

X+T=

FO

at x = 0
at x = L
> ag% = {)
& i
B Y=

cosh AL cosh Ay -

AEX

sinh Al

F:D
AEA

X

e 55110 AR = .

AZp

4.30

4.33

4.32

4,33

4,34

4,35
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4.4  Soiution to Fquation of Motion; Second Mode?
Before inverting equation 4.35 we concentrate attention on the

top of the pile » = 0. At this point

F .
S h il o
X = E = —ﬂr-g':‘ CO;S e S e 4136
E & sinh iL Atp
The inversion of equation 4.36, after using a series expansion
for the term containing hyperbolic functions, yields:
i': C _ BC% r , JES—
N - g L A
X - ﬁ? e 7 !To(ggkt} 2 [r (Sc 3 %tgvfgg)f
i o
Bc? ﬁ~;”*““““““ Be? g“”“ e 1
’%‘ IO ( (‘EH- ) =¥« IG (“"2’* ) )4' 9, ]
w;ui»[,l ct e ede @ = BCHL 4 4.37
Ky + ged Rr? ‘ °

where E. is the hyperbolic Bessel function having the property

TR e et et

55&7?/ 3y S N ; . :
that I {" 5 “}® 0 for t <« 5, The derivative of ID is

¢

di
dtg': Iy where these functions have the character suggested in

Figure 4.8 and are expressed by the following formulas:

3 i = .Z;i i ,Z;L‘ B - ‘t bt
L2y = V% S5t Gt 300 ©
P :7“‘ 73

Lz) =5+ g5+ 387 *

The pile top velocity is obtained by differentiating equation 4.37:
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#2 (b 1y (B2 Y2 (Fy7 4 Lt 1882 x
e Y2 g2
t "(*30 t - (=)
fmm"“mwmmm K
Ce-(dy? )y ooa)]}a+ ?%«(e - et g 1.38

Let pAL = m be the mass of the rigid pile. The equation

of motion is . )
mX + Kol x = F 8(t) - Kyl 4,39

with quiescent initial conditions. This is eguivalent to the

equation v
mX + KL X+ KL=0 4,40

with the initial conditions:
x(0} = 0 %(0) = F/m 4,41

Let

X = A+ Bt + CePt 4042

be a trial solution of equation 4.40 for conditions 4.41.

Use of this results in the solution

£
(5]

I :
= g -t O :
= -Rm;i:u {nﬁ + vﬁ*" ] t ?‘Z’C‘ [ ol + Kz ] e m [M
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for which the velocity is

KoLt

- =K F K T T 4,44

X = wR;-+ [7§~+ Eé'} e
Taking Ky = 0 and g = %f (i.e. Ky = BAE = %% ) permits a
sample plot of responses as given in equations 4.37 and 4.43,
4.38 and 4.44 and shown in Figures 4.9 and 4,10. Other plots can
- be carried out similarly, MNote that the velocity at the top of the
etastic pile goes through infinite positive jumps at multiples of
%%»with negative stretches between jumps.
If yp(t) be any response of the system (such as displace-
ment, velocity, acceleration) to an impuise, such as is applied
in the second model, and if F(t) to be the actual force applied

to the pile, then the total corresponding response Y{t) is

Y(t) = F(r) yp {(t=<) dv 4.45

0

The two theoretical pile models assumed above are not
sufficiently realistic as yet to permit more than qualitative
conciusions for actual piles. They do clearly indicate, however,
the effect of wave action traveling up and down the piie, and
the oscillation of the elastic pile about the rigid body position.
The actual forcing functions encountered in practice are never true
impulse-functions, and this fact may be expected to "spread out® the

response graph for more realistic forcing functions.

It may be noted from equation 4,45 that the form of the response
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tends to follow the form of the forcing function F{t).with slight
"deviations" imposed by the yp(t)g which tends toward a unit
value in either the elastic or the riqgid body case. In fact, the
elastic response in a sense "oscillates” abouf the rigid body
response and converges to it in time.

The continuing aim of the present theoretical approach is
to develop sufficiently realistic pile models and forcing functions
for them to reveal the truly important differences - if any-between
rigid body pile and elastic pile response, To date the models
and loadings used have suggested methods of approach but have not
settled the question of the extent the use of a rigid body pile
model = as against an elastic one.- is adequate in the present
study., While, theoretically, strong differences between the two
models appear to exist, the practical results of field experience
to date suggest that a rigid body model may in fact be quite

adequate,
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TABLE 3.1

DRIVING RECORD FOR THE PILE INVESTIGATED

Penetration Blows Set
{feet) (Inches/Blow)
50 24 (0,500
51 22 0,545
52 23 (0.522

53 27 0.444

Driving record for the last four feet of driving.
Pile Tocated at Willow-Clark Interchange, Cleveland,
Ohio,
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FIGURE 3.1

Mathematical Medel of Typical Pile
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FIGURE 3.2

Mathematical Model of Pile Studied
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FIGURE 3.7

Continued
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Figure 3.7

Stress~Strain Diagram at Pile Point
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SMITH'S ANALYSIS — SPRING 2
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Figure 3.13

Strain Versus Time
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SMITH'S ANALYSIS—~ 2nd SPRING
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Figure 3.14

Strain Versus Time
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Set Versus Ultimate Resistance
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SMITH'S ANALYSIS 2nd SPRING

ELECTRONICALLY
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Set = 0.48 in/blow
Figure 3.76

Strain Versus Time
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SMITH'S ANALYSIS—2nd SPRING

3rd SPRING

8OO

600 —

400—

ELECTRONICALLY

500 RECORDED

2 4 5 8 10 2
TIME IN MILLISECONDS

Ru = 200,000# RU/Q = 500,000
Resistance  Point = 69Y% RU
Distribution  Side = 31% Ru
Damping J = 0.015
and Quake J'= 0.005
Yalues G =20.4

Set = 0.58 in/blow
Figure 3.17

Strain Versus Time
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SMITH'S ANALYSIS —3rd MASS
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Figure 3.18

Velocity Versus Time
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SMITH'S ANALYSIS — 3rd MASS
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Acceleration Versus Time
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Idealized Pile Model
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Hyperbolic Bessel Functions
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