# **CORRELATION OF CAPWAP WITH STATIC LOAD TESTS**

## Garland Likins<sup>1</sup> and Frank Rausche<sup>2</sup>

### ABSTRACT

Signal matching analysis such as CAPWAP is considered a standard procedure for the capacity evaluation from high strain dynamic pile testing data. Using one pile top measurement, like the downward stress wave, CAPWAP iteratively alters the soil model to calculate and obtain a best match with the complimentary wave, such as the measured upward traveling wave. Previous studies of databases, and individual experience, have demonstrated generally good correlation of CAPWAP signal matching results on dynamic restrike tests with static load tests. The Proceedings of all six previous Stresswave conferences were reviewed to extract correlation cases which included both CAPWAP restrike results and static load tests. Results are summarized in a database and also presented separately for both 119 driven piles and for 23 cast-in-situ foundations such as drilled shafts and augercast-CFA piles. A statistical evaluation of results categorized by pile type is presented with a discussion of noted differences. Combined with previous studies in 1980 and 1996, the database now contains 303 case histories. The statistical results are valuable for future research into the reliability evaluation of safety and resistance factors of dynamic methods.

Keywords: CAPWAP, signal matching, static test, dynamic test, correlation, piles, drilled shafts

### **1. INTRODUCTION**

Although there are many applications for dynamic pile testing, bearing capacity being the main one. The ability to accurately predict static capacity from dynamic pile testing has resulted in many studies, and has been the focus of dynamic pile tests on many project sites. Standard practice requires performing signal matching on the data to more accurately determine capacity from the dynamic tests.

Reliable correlations for long term capacity from dynamic tests with static load tests require simple guidelines. For driven piles, dynamic tests should be performed during a restrike after a sufficient wait period to allow soil strength changes to stabilize. Ideally, the time after installation for the dynamic test should be similar to that of the static test, and preferably as soon as possible after the static test completion. However, time pressures in the construction schedule often require dynamic testing after a limited wait time, and the full "setup" increase is then not achieved. Testing of drilled shafts or augercast piles requires the concrete or grout to achieve a sufficient strength, which indirectly allows the soil to recover from the drilling process. The driven or drilled pile must also experience a reasonable net set per blow (typically 2 mm or more) to mobilize the full capacity. Since dynamic testing of drilled shafts often results in a small set per blow, the capacity predicted would be biased on the conservative side.

Often the project engineer has then reported results for a particular project, or from a study of a series of projects, in the six previous Stresswave Conference Proceedings. While these papers are individually interesting and informative, this paper summarizes the two previous major studies (Goble et al 1980, Likins et al 1996) and a compilation of these individually reported results from previous Stresswave Conferences into a single research document. The data can then be viewed statistically for trends and to allow for computation of rational resistance factors for LRFD (load-resistance factor design) applications.

Based on the original research work at Case Western Reserve University under the direction of Dr. G. G. Goble, the CAPWAP analysis procedure was both developed and reported (Goble et al 1980). The

<sup>&</sup>lt;sup>1</sup> President, Pile Dynamics, Inc., 4535 Renaissance Pkwy, Cleveland OH 44128 USA

<sup>&</sup>lt;sup>2</sup> President, GRL Engineers, Inc., 4535 Renaissance Pkwy, Cleveland OH 44128 USA

CAPWAP model for soil resistance is similar to the classical Smith model (Smith 1960), but with extensions to account for unloading behavior not originally considered by Smith, and have little effect on total capacity. Most data in the Goble et al (1980) database was from closed end steel pipe piles, predominant in Ohio, reflecting the sponsored research goals. Additional tests performed in cooperation with Federal Highway Administration (FHWA) and other state agencies demonstrated similar accuracy on H, timber, and concrete piles. The scattergraph of CAPWAP (CW) results versus static load test (SLT) is shown in Figure 1.

The authors subsequent experience and a research project sponsored by FHWA led to a correlation database, including additional data received from an open call for data from several dynamic testing firms; all data received was included without regard to correlation results, provided it had good quality

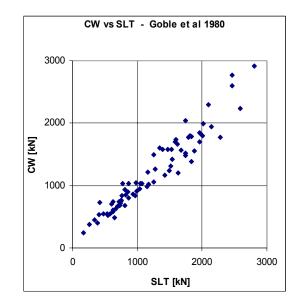



Figure 1: correlation of Goble's 1980 study

dynamic data from restrike, a measured blow count with sufficient set per blow, a static test to failure (Davisson interpretation), a soil boring, and known dates of both restrike and static test relative to installation. In contrast to the original 1980 study, only 36 of the 83 piles were steel, and only 19 were pipes. The results of both the usual "Best Match" and the extended "Radiation Damping" solutions (Likins et al 1996) are shown in Figure 2.

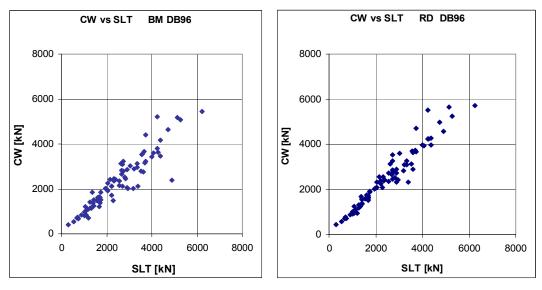



Figure 2: correlation of the 1996 database (left: Best Match, right: Radiation Damping)

In both the original study (Goble et al 1980) and the subsequent effort (Likins et al 1996), the data (from driven piles only) was analyzed by the then state-of-the-art CAPWAP analysis. The 1996 study included investigation of the fully automatic CAPWAP method which performs all calculations without any human interaction; correlation results are very good, demonstrating the inherent reliability for capacity evaluation from dynamic testing. A statistical overview of past and current studies is given in Table 1. Average CAPWAP to SLT ratio is given, with coefficient of variation (COV), the number of sample data points (N), and the Correlation coefficient (Correl). The improvement in the results for the Radiation Damping (RD) model is obvious for the 1996 data. This RD model is most helpful for higher blow count situations (low set per blow), but is not recommended for very easy driving (Likins et al 1996).

| <u>Study</u> | CW/SLT | <u>C.O.V.</u> | N    | <u>Correl</u> | notes note                | e2                  |
|--------------|--------|---------------|------|---------------|---------------------------|---------------------|
| 1980         | 1.010  | 0.168         | 77   | 0.960         | Goble et al 1980 study    |                     |
|              |        |               |      |               |                           | BOR                 |
| 1996         | 0.964  | 0.223         | 83   | 0.861         | automatic only            | = begin of restrike |
| 1996         | 0.955  | 0.197         | 51   | 0.902         | automatic only            | BOR = 6 + days      |
| 1996         | 0.931  | 0.166         | 83   | 0.927         | Best match                | -                   |
| 1996         | 0.920  | 0.177         | 51   | 0.951         | Best match                | BOR = 6 + days      |
| 1996         | 1.012  | 0.097         | 83   | 0.967         | radiation damping         | -                   |
| 1996         | 1.009  | 0.081         | 51   | 0.971         | radiation damping         | BOR = 6 + days      |
|              |        |               |      |               |                           | "SW" from 6 "Stress |
| SW           | 0.993  | 0.165         | 143  | 0.984         | all piles:                | Wave" Conferences   |
| SW           | 0.983  | 0.156         | 119  | 0.987         | all driven piles          |                     |
| SW           | 0.987  | 0.161         | 70   | 0.968         | all driven concrete       |                     |
| SW           | 0.974  | 0.149         | 46   | 0.990         | all driven steel          |                     |
| SW           | 1.037  | 0.199         | 23   | 0.981         | all drilled and cfa       |                     |
| SW           | 1.028  | 0.164         | 65   | 0.990         | BOR 5+ days               |                     |
| SW           | 0.972  | 0.147         | 45   | 0.989         | BOR/slt > 0.25            |                     |
| SW           | 1.039  | 0.200         | 49   | 0.933         | all piles                 | cw/Davisson         |
| SW           | 0.982  | 0.139         | 15   | 0.982         | all piles                 | cw/D10              |
| SW           | 0.910  | 0.183         | 96   | 0.981         | all piles                 | cw/max              |
| SW           | 0.968  | 0.101         | 24   | 0.989         | all piles                 | C20/u20             |
|              |        |               |      |               |                           |                     |
| All          | 0.980  | 0.169         | 303  | 0.983         | 1980, 1996 using best r   | natch data, plus SW |
|              | 0.888  | 0.184         | 179  | 0.977         | 1996 plus SW              | Cw/max              |
|              |        |               |      |               | •                         |                     |
| 2000         | 0.930  | 0.146         | 75   |               | Static versus static - Pa | ikowsky             |
|              |        |               |      |               | slow MLT (Dav.) versu     | -                   |
|              | Q 1    |               | C .1 | 1             |                           |                     |

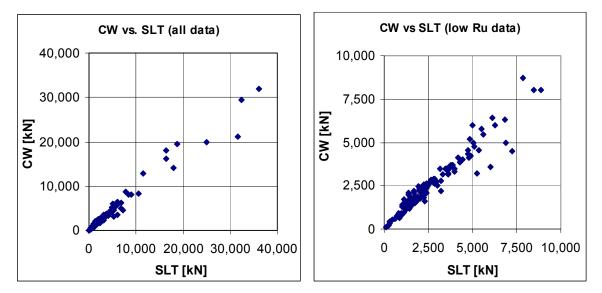



Table 1: Statistical summary of the correlation studies

Figure 3: Compilation of correlations from previous Stresswave Conferences (N= 143)

## 2. STRESSWAVE CONFERENCE PROCEEDING RESULTS

Numerous papers in the previous six Stresswave conference proceedings report correlations of CAPWAP analyses by various authors on restrikes with static load tests. A total of 143 results were identified,

compiled and presented in Table 1 (marked SW), Figure 3a and Appendix A. Capacity was determined dynamically from restrike testing of 119 driven piles, and also for 23 cast-in-situ piles (e.g. drilled shafts and augercast –CFA piles) following a sufficient curing time for the concrete. Many papers contained only numerical results for either CAPWAP or SLT. In all cases, the author's determination of the static load test result was used. For example, Seidel and Rausche (1984) present a CW prediction of 21,200 kN for the Chin SLT projection of 31,700 kN, even though the maximum applied load for that test was only 20,000 kN (the plotted static test curve was flat at the max 20,000 kN). Where different evaluations of the static load test were presented, the method selected for correlation was the Davisson method. Most papers included a basic description of the soil conditions, but many papers failed to identify the blow count (set per blow). Because of the recent trend toward increased design loads and more frequent use of dynamic load testing for high capacity drilled shafts, Figure 3b also shows only the results below 10,000 kN in more detail.

Because pile capacity generally changes over time, proper evaluation of capacity must consider time dependent effects. Unfortunately, only slightly less than half of the cases contained information on dates of dynamic testing and static testing relative to installation date. Inclusion of dates allows computation of the "Time Ratio", defined as the time of the dynamic test divided by the time of the static test, both relative to the installation date. So that time dependent soil strength changes after installation are minimized, a Time Ratio of 1.0 is usually ideal (except for extremely sensitive soils). Restrike tests after a very brief time (e.g. one day) often resulted in relatively low prediction (compared with a much later SLT) since the typical strength gains from setup were not fully realized in the dynamic test. Dates of tests, relative to date of installation, should be included in future reporting of results.

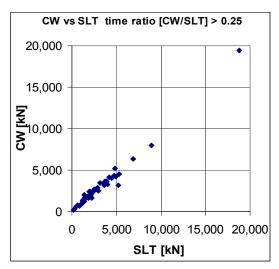



Figure 4: Correlation for Time Ratio > 0.25

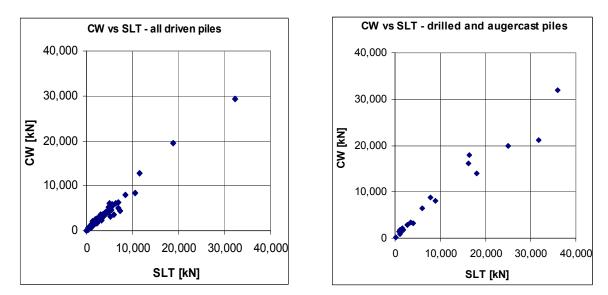



Figure 5: Stresswave Correlations for driven and cast-in-situ piles

As shown in Figure 4 and confirmed by statistics in Table 1, restrikes after longer waiting periods (e.g. 6 days) or with Time Ratios greater than 0.25 result in significant reduction of the coefficient of variation, and are therefore desirable.

Figure 5 presents the results separately for driven piles and for cast-in-situ drilled and augered piles. Table 1 shows a lower coefficient of variation for driven piles. This is perhaps due to more reliable information for driven piles of both the shape (e.g. cross section area versus pile length) and modulus of elasticity (used to calculate force from the measured strain), which are well known or easily determined. For drilled shafts, and especially CFA piles, the pile cross sectional area varies with the length.

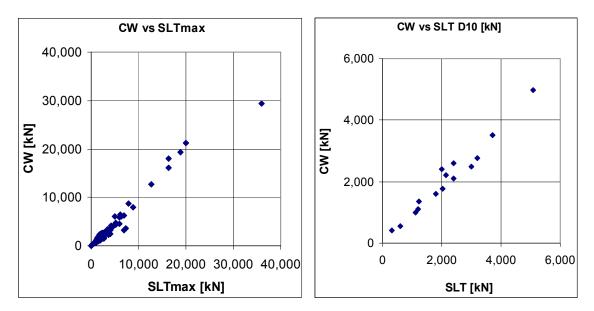



Figure 6: Stresswave Correlations for other definitions of SLT "failure" (left, maximum; right, D/10)

Because the interpretation of the SLT failure load is subjective, Figure 6 presents the CW results relative to other SLT interpretations (where available), namely the maximum applied load and the D/10 criterion

which is popular for assessing drilled shaft capacity (D/10 results were all from small diameter piles, and conclusion may not extrapolate to larger shafts). The value of comparing these other failure definitions is illustrated by Lee et al (1996) who presented 8 of the 12 highest CW/SLT ratios for Davisson method, while most of Lee's reported CW results were actually very comparable to his reported SLT maximum load. Of course, the maximum SLT load is related to the applied maximum displacement. All methods are sensitive to measurement errors (SW papers usually did not report if a load cell was used to For both alternate methods measure force). (max and D/10), the coefficient of variation was reduced and the correlation coefficient improved.

| 0.842<br>0.872<br>0.882<br>0.915 | 22<br>24                                                             |
|----------------------------------|----------------------------------------------------------------------|
| 0.882                            | 24                                                                   |
|                                  |                                                                      |
| 0.915                            | 1 7                                                                  |
|                                  | 17                                                                   |
| 0.872                            | 24                                                                   |
| 0.939                            | 23                                                                   |
| 0.925                            | 24                                                                   |
| 0.960                            | 15                                                                   |
| 0.950                            | 24                                                                   |
| 0.932                            | 24                                                                   |
| 0.796                            | 20                                                                   |
| 0.515                            | 23                                                                   |
|                                  | 0.872<br>0.939<br>0.925<br>0.960<br>0.950<br>0.932<br>0.796<br>0.515 |

Table 2: Correlations of different failure criteria (after Duzceer & Saglamer, 2002)

At the 2000 Stresswave conference, Paikowsky correlated one SLT type with another SLT method on the same pile; interestingly, the statistics (Table 1) for these 75 cases of Davisson versus cyclic SLT interpretation are comparable to the restrike CAPWAP to SLT result. Duzceer (2002) compared 12 different failure criteria on 24 piles (14 driven and 10 drilled). Because there is no universal consensus as to a definite preferred criteria, the "average" failure load from all Duzceer tests (but ignoring Chin result) was taken as the "correct" answer. In comparing the ratio of individual criteria to this "average", Table 2 shows a wide difference in SLT failure loads for the different criteria and considerable scatter (COV), especially for methods with very low or high average ratios. Some failure definitions are relatively conservative (e.g. DeBeer, Housel); others are non-conservative (e.g. Mazurkiewicz, Brinch-Hansen 80%, Chin). The other seven methods fall within an 18% range ( $\pm$ 9% of the average). The average Davisson result, used for the 1980 and 1996 studies and by many SW authors, was about 5% below the "average". Since the range of results in Table 1 of CAPWAP to SLT ratios is smaller than even the 18% range for the middle seven SLT failure definitions, CAPWAP result is generally conservative since, statistically, it is less than Davisson, and Davisson is less than the average interpreted failure load.

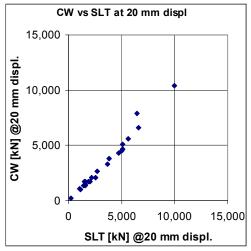



Fig 7: Comparison at 20 mm displacement

A comparison of the CAPWAP result with SLT load, both for a displacement of 20 mm, is shown in Figure 7. Correlation of results, as confirmed by the statistics in Table 1, is excellent and reflects the accuracy and precision of the CAPWAP calculated stiffness of the pile and soil system, and soil resistance distribution.

Combining the 1980 Goble study and the 1996 Likins study (using the "best match" method) with the review of previous Stresswave conferences (SW), the 303 cases are then presented in Figure 8 (lower capacity result detail is presented in Figure 8b). For the 303 cases, Table 1 shows an average CW/SLT ratio of 0.98 with COV of 0.169.

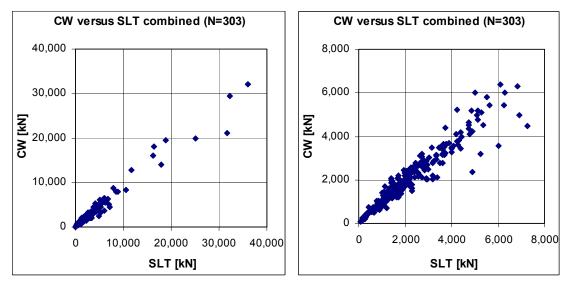



Figure 8: Combined results of previous and current correlation studies of CAPWAP versus SLT

Figure 9 presents the correlation of CAPWAP to the maximum applied static load for 179 cases combined from the 1996 and SW database. The average ratio is only 0.888 (Table 1), showing CAPWAP to be conservative, but with a COV of 0.184.

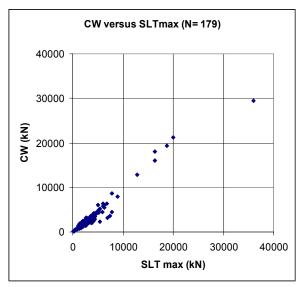



Figure 9: Correlation of CW with max SLT for SW and 1996 database studies

While the results from Figure 8 suggest good correlation, they also point out that there are some cases where CAPWAP overpredicts. Using the author's definition for the SW database and Davisson for the 1996 database, Figure 10 shows a histogram for the ratios of CAPWAP to static load test result. Clearly, results are normally distributed and few cases exceed a ratio of 125%. The selection of static test failure load, being somewhat arbitrary, comparison of the CAPWAP result to the maximum applied load for the same combined database is shown in Figure 11 for the 179 cases where the static load test curve is available. In this view, only for 1% of the combined data does the ratio of CAPWAP to maximum applied load exceed 125%. Such relatively small overprediction is not likely to cause problems for the foundation as it is well within the usual safety factor applied. Less than 9% of the cases exceed a ratio of 110%. It should be further

noted that the applied maximum static load is also probably not the true maximum reserve strength of the pile. If the SLT were carried to larger applied displacements, then the maximum applied loads would also increase in many cases, and the CAPWAP to SLT ratio would be further reduced. It is suspected that many of the very low ratios include either cases with substantial setup where the restrike was performed very early, or where the blow count was near refusal and did not activate the full capacity.

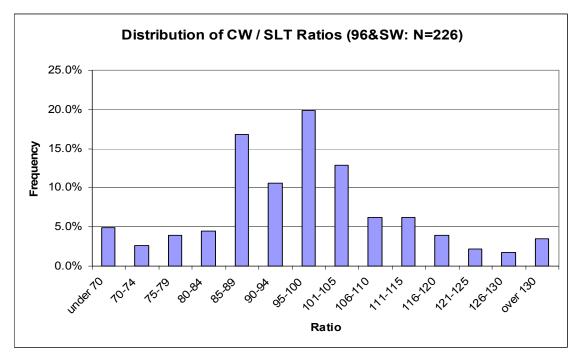



Figure 10: Distribution of CAPWAP to SLT ratios for 1996 and SW database studies

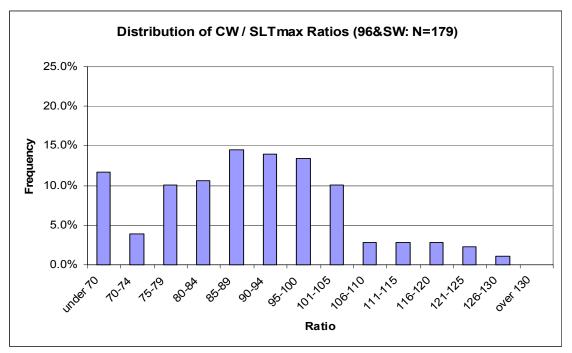



Figure 11: Distribution of ratios of CAPWAP to SLT (max applied load) for 1996 and SW database studies

### **3. CONCLUSIONS**

Statistical evaluation of previous studies and the current compilation of results from previous Stresswave conferences show the CAPWAP analysis of dynamic pile testing data for restrikes to be very reliable in determination of ultimate capacity of both driven piles and cast-in-situ piles (e.g. drilled shafts and augercast-CFA piles). Accuracy is slightly better for driven piles than for cast-in-situ piles. Comparison of CAPWAP results with static load tests on the same piles shows excellent agreement.

Differences between CAPWAP and SLT results are generally well within the range of SLT failure loads by different evaluation methods, and are comparable to the statistics of different static tests on the same piles. For the 303 cases in the combined database, the average CAPWAP/SLT ratio was 0.98 with COV of 0.169. Since the average CAPWAP to SLT ratio is less than unity, and the often used Davisson evaluation is less than the average failure definition, CAPWAP is statistically generally conservative. Less than 9% of the cases result in a ratio of CAPWAP to the maximum applied static load exceeding a ratio of 110%. Thus, CAPWAP is usually a conservative result compared to the reserve strength of the pile.

Accuracy of prediction by CAPWAP of long-term service load is improved by requiring at least 6 days before the dynamic restrike test to allow soil strength changes with time to stabilize. Based on results from the 1996 study, accuracy of capacity prediction would probably be improved further by use of the radiation damping model, particularly for cases of moderate to small set per impact. Considering the low cost of dynamic testing and the relatively good accuracy of the CAPWAP capacity prediction, further application of the CAPWAP method for capacity evaluation is justified both economically and technically for both driven and cast-in-situ piles.

#### REFERENCES

- Duzceer, R. and Saglamer, A., 2002. "Evaluation of Pile Load Test Results", Proceedings of the 9<sup>th</sup> International Conference on Piling and Deep Foundations, Deep Foundations Institute, Nice France.
- Goble, G.G., Rausche, F., and Likins, G., 1980. "The analysis of pile driving A state-of-the-art", Proc. of the 1<sup>st</sup> Int'l Conf. on Application of Stresswave Theory to Piles. Balkema, Stockholm Sweden.
- Lee, W.J., Lee, I.M, Yoon, S.J., Choi, Y.J., and Kwon, J.H., 1996. "Bearing Capacity Evaluation of the Soil-Cement Injected Pile Using CAPWAP", Proc. of the 5th Int'l Conf. on the Application of Stresswave Theory to Piles. University of Florida, Orlando Florida USA.
- Likins, G.E., Rausche, F., Thendean, G. and Svinkin, M., 1996. "CAPWAP Correlation Studies", Proc. of the 5th Int'l Conf. on the Application of Stresswave Theory to Piles. University of Florida, Orlando Florida USA.
- Seidel, J., and Rausche, F., 1984. "Correlation of static and dynamic pile tests on large diameter drilled shafts", Proc. of the 2nd Int'l Conf. on the Application of Stresswave Theory to Piles. Balkema, Stockholm Sweden.
- Smith, E.A.L., 1960. "Pile Driving Analysis by the Wave Equation", American Society of Civil Engineers, Journal of the Soil Mechanics and Foundations Division, 86(4).
- Paikowsky, S. and Stenersen, K., 2000. "The performance of dynamic methods, their controlling parameters and deep foundation specifications", Proc. of the 6th Int'l Conf. on Application of Stresswave Theory to Piles. Balkema, Sao Paulo Brazil
- Proceedings of the 1<sup>st</sup> International Conference on the Application of Stresswave Theory to Piles 1980. Bredenburg editor, Balkema, Stockholm Sweden.
- Proceedings of the 2nd International Conference on the Application of Stresswave Theory to Piles 1984. Holm, Gravare and Bredenburg editors, Balkema, Stockholm Sweden.
- Proceedings of the 3rd International Conference on the Application of Stresswave Theory to Piles 1988. Fellenius editor, Balkema, Ottawa Canada.
- Proceedings of the 4th International Conference on the Application of Stresswave Theory to Piles 1992. Barends editor, Balkema, Ghent Netherlands.
- Proceedings of the 5th International Conference on the Application of Stresswave Theory to Piles 1996. Townsend, Hussein, and McVay editors, University of Florida, Orlando Florida USA.
- Proceedings of the 6th International Conference on the Application of Stresswave Theory to Piles 2000. Niyama and Beim editors, Balkema, Sao Paulo Brazil

#### **APPENDIX A - THE DATABASE**

Previous Stresswave Proceedings contain a wealth of correlation cases for high strain dynamic testing in individual papers. To evaluate the method's accuracy, individual case histories containing restikes and CAPWAP analysis have been herein combined into a single database. The restrike criteria is essential since it is well known that pile capacity varies with time (usually due to set-up, caused by recovery of the soil structure due to the installation process). CAPWAP is an essential component of proper evaluation of capacity. The individual detailed data are presented in Table A1 (data excludes other large studies in 1980 by Goble et al. and 1996 by Likins et al.) The authors and page number for each Conference Proceeding is shown with a description of the pile (e.g. name, diameter, and pile type: cep-closed end pipe; oep-open end pipe; psc- prestressed concrete; rc-reinforced concrete; h- H pile; ds- drilled shaft; cfa- continuous flight augercast). Due to the importance of the date of testing on soil strength and thus pile capacity, Table A1 shows the number of days after installation (if revealed by the author) for both the restrike and the static test. The CAPWAP (CW) and static load test (SLT) capacities as determined by the author, and the method of static test evaluation (when known: e.g., D/10, Chin, Dav-Davisson, BH-Brinch Hansen, VV-Van der Veen) are included. In cases where the author lists the maximum applied load, or where the static load test curve is included, the maximum applied static load is also included (SLTx). This table serves as an index to the previous Stresswave Proceedings.

| author     | Page     | pile   | Pile   | dia  | CW   | SLT  | CW    | SLT        | SLTx  |
|------------|----------|--------|--------|------|------|------|-------|------------|-------|
|            |          |        |        | mm   | days | days | kN    | kN         | Max   |
| 1980 SW Pr | oceeding | S      |        |      |      |      |       |            |       |
| Gravare    | 99       | Grvsnd | Rc     | 275  |      | 1    | 1560  | 1770       | 1770  |
| Thompson   | 163      | TP1    | h      | 300  | 3    |      | 3200  | 3605 Dav   | 3605  |
| Thompson   | 163      | TP2    | cep    | 300  | 3    |      | 1780  | 2000 Dav   | 2680  |
| Thompson   | 163      | TP3    | psc    | 300  | 3    |      | 2310  | 2225 Dav   | 2870  |
| Thompson   | 163      | P1     | h      | 300  | 1    |      | 1160  | 1420 Dav   | 2000  |
| Thompson   | 163      | P4     | cep    | 300  | 1    |      | 1600  | 1335 Dav   | 1820  |
| Thompson   | 163      | P5     | h      | 300  | 1    |      | 2890  | 2800 Dav   | 3120  |
| Thompson   | 163      | P6     | cep    | 300  | 1    |      | 2580  | 2450 Dav   | 2880  |
| Thompson   | 163      | P7     | timber |      | 1    |      | 620   | 670 Dav    | 884   |
| Thompson   | 163      | P10    | psc    | 300  | 1    |      | 1510  | 1740 Dav   | 2500  |
| Authier    | 197      | 1      | psc    | 305  | 0.05 | 2    | 2200  | 3200       | 2800  |
| 1984 SW Pr | oceeding | S      |        |      |      |      |       |            |       |
| Seitz      | 201      | IV     | ds     | 1500 | 60   |      | 16100 | 16300      | 16300 |
| Sanchez    | 221      | 1      | psc    | 900  |      |      | 3500  | 3500       | 3500  |
| Sanchez    | 221      | 1      | psc    | 900  |      |      | 6000  | 5000       | 5000  |
| Holm       | 240      | P1     | rc     | 270  | 28   | 21   | 535   | 460 Dav    |       |
| Holm       | 240      | P2     | rc     | 270  | 28   | 21   | 310   | 300 Dav    |       |
| Holm       | 240      | P3     | rc     | 270  | 28   | 21   | 1210  | 1390 Dav   |       |
| Holm       | 240      | P4     | rc     | 270  | 28   | 21   | 820   | 990 Dav    | 1060  |
| Holm       | 240      | P5     | rc     | 270  | 28   | 21   | 750   | 690 Dav    |       |
| Seidel     | 313      | 302/1  | ds     | 1500 |      |      | 20000 | 25000 Chin |       |
| Seidel     | 313      | 303/1  | ds     | 1500 |      |      | 21200 | 31700 Chin | 20000 |
| Seidel     | 313      | 403/2  | ds     | 1500 |      |      | 32000 | 36000 Chin |       |
| Seidel     | 313      | 204/2  | ds     | 1300 |      |      | 18000 | 16400      | 16400 |
| Seidel     | 313      | 3385/1 | ds     | 1100 |      |      | 14000 | 18000 Chin |       |
| 1988 SW Pr | oceeding | S      |        |      |      |      |       |            |       |
| Nguyen     | 353      | fittja | cep    | 90   |      |      | 90    | 90         | 90    |

Table A1: Compilation of CAPWAP and Static test correlations from previous SW conferences

| author      | Page     | pile     | pile | dia<br>mm | CW<br>days | SLT<br>days | CW<br>kN | SLT<br>kN | SLTx<br>Max |
|-------------|----------|----------|------|-----------|------------|-------------|----------|-----------|-------------|
| Nguyen      | 353      | hallsfj  | cep  | 812       | 50         | 50          | 3200     | 5250 Dav  | 6900        |
| Cheng       | 477      | A5       | cep  | 298       | 1          |             | 2183     | 2170 Dav  | 2240        |
| Cheng       | 477      | B13      | cep  | 244       |            |             | 880      | 1020 Dav  | 1620        |
| Cheng       | 477      | C-TP1    | cep  | 244       |            |             | 2375     | 2400 Dav  | 2650        |
| Cheng       | 477      | C-TP2    | cep  | 244       |            |             | 1527     | 1630 Dav  | 1995        |
| Cheng       | 477      | D24      | cep  | 324       |            |             | 921      | 1080 Dav  | 1200        |
| Cheng       | 477      | E-C-60   | cep  | 324       |            |             | 2710     | 2935 Dav  | 3200        |
| Holeyman    | 542      | 7        | psc  | 320       |            |             | 1640     |           |             |
| Holeyman    | 542      | 11       | psc  | 320       | 11         | 41          |          | 2800      | 3130        |
| Thompson    | 555      | A5       | psc  | 400       | 1          |             | 1390     | 1420 Dav  |             |
| Thompson    | 555      | C2       | psc  | 610       | 1          |             | 1760     | 1760 Dav  |             |
| Thompson    | 555      | G1       | psc  | 500       | 1          |             | 1920     | 2180 Dav  |             |
| Thompson    | 555      | G2       | psc  | 500       | 1          |             | 930      | 800 Dav   |             |
| Thompson    | 555      | J1       | cep  | 335       | 1          |             | 2670     | 2580 Dav  |             |
| Bustamante  | 579      | KP1      | h    | 350       |            | 28          | 2777     | 3200 D/10 | 3500        |
| Bustamante  | 579      | KP2      | h    | 350       |            | 28          | 3513     | 3700 D/10 |             |
| Bustamante  | 579      | KP3      | h    | 350       |            | 28          | 4966     | 5075 D/10 |             |
| Bustamante  | 579      | MP1      | h    | 350       | 1          | 42          | 1759     | 2020 D/10 |             |
| Bustamante  | 579      | MP2      | h    | 350       | 1          | 42          | 2107     | 2400 D/10 |             |
| Bustamante  | 579      | MP3      | h    | 350       | 1          | 42          | 1591     | 1800 D/10 |             |
| Chow        | 626      | 28/E7    | rc   | 280       |            | 21          | 1373     | 1600      | 1600        |
| Huang       | 635      | Shang.   | h    | 350       | 1.7        | 30          | 4485     | 7250      |             |
| Plesiotis   | 668      | br.river | rc   | 355       | 47         | 92          | 1200     | 1270 BH   | 1280        |
| Plesiotis   | 668      | Bar. 1   | rc   | 450       |            |             | 3166     | 3333 BH   |             |
| Plesiotis   | 668      | Bar. 2   | rc   | 450       |            |             | 3666     | 3777 BH   |             |
| Plesiotis   | 668      | Bar. 3   | rc   | 450       |            |             | 4111     | 4777      |             |
| Hunt        | 689      | 2A'A'-10 | cep  | 355       |            |             | 2669     | 2802      |             |
| Hunt        | 689      | 2N32-17  | cep  | 355       |            |             | 3576     | 3648      |             |
| Seidel      | 717      | 1        | rc   | 450       | 540        | 100         | 3700     | 3900      |             |
| Seidel      | 717      | 2        | rc   | 450       | 540        | 100         | 4118     | 4200      | 4200        |
| Seidel      | 717      | 3        | rc   | 450       | 540        | 100         | 3416     | 3600      |             |
| Yao         | 805      | PC1      | psc  | 600       | 10         | 35          | 6301     | 6840 Dav  | 6840        |
| Yao         | 805      | PC2      | psc  | 600       | 10         | 35          | 4533     | 5341 Dav  | 5962        |
| Yao         | 805      | PC3      | psc  | 600       | 10         | 35          | 4340     | 4724 Dav  | 5171        |
| Fellenius   | 814      | AM       | cep  | 245       | 14         | 13          | 1807     | 1810      | 1890        |
| Skov        | 879      | P9/1     | rc   | 250       | 52         | 29          | 1335     | 1250      |             |
| Skov        | 879      | 4A       | cep  | 762       | 30         | 7           | 5170     | 4850      |             |
| Skov        | 879      | case3    | rc   | 300       | 11         | 14          | 640      | 880       |             |
| Skov        | 879      | D2       | rc   | 350       | 23         | 19          | 2450     | 2450      |             |
| Holloway    | 889      | TP1      | psc  | 350       | 12         | 5           | 2050     | 2180      | 2243        |
| 1992 SW Pro | oceeding | (S       |      |           |            |             |          |           |             |
| Likins      | 117      | case 1   | psc  | 600       | 6          | 11          | 2310     | 2270 Max  | 2270        |
| Likins      | 117      | CT1      | psc  | 450       | 21         | 21          | 1702     | 1666 Ult  |             |
| Likins      | 117      | CT2      | psc  | 450       | 11         | 21          | 2668     | 2540      |             |
| Likins      | 117      | CT3      | psc  | 600       | 8          | 22          | 2615     | 2869      |             |
| Likins      | 117      | CT4      | psc  | 600       | 10         | 22          | 3617     | 3724      |             |

| author     | Page     | pile    | pile  | dia<br>mm | CW<br>days | SLT<br>days | CW<br>kN | SLT<br>kN | SLTx<br>Max |
|------------|----------|---------|-------|-----------|------------|-------------|----------|-----------|-------------|
| Likins     | 117      | CT5     | psc   | 900       | 6          | 20          | 4210     | 4900      |             |
| Likins     | 117      | CT6     | psc   | 900       | 3          | 17          | 4994     | 6905      |             |
| Riker      | 143      | Alsea   | psc   | 510       | 2          | 12          | 3580     | 6000 Dav  | 7400        |
| Seidel     | 153      | А       | psc   | 600       | 11         | 61          | 3830     | 4300      | 4300        |
| Seidel     | 153      | В       | psc   | 600       | 58         | 50          | 4000     | 4420      | 4600        |
| Hartung    | 259      | sheet   | sheet |           |            |             | 1344     | 1100      | 1300        |
| Dai        | 271      | 1       | ds    | 800       | 25         | 33          | 2822     | 2750      | 3000        |
| Dai        | 271      | 2       | ds    | 800       | 22         | 40          | 3290     | 4000      | 4000        |
| Shioi      | 325      | Т       | oep   | 2000      | 2          | 52          | 29400    | 32340     | 36000       |
| Fellenius  | 401      | 247     | cep   | 244       | 26         | 22          | 2390     | 2070      | 2090        |
| Bustamante | 531      | 1       | h     | 350       | 5          | 69          | 2600     | 2400 D/10 | 2400        |
| Bustamante | 531      | 2       | h     | 350       | 5          | 75          | 2400     | 2000 D/10 | 2000        |
| Chapman    | 537      | case5   | rc    | 350       | 3          |             | 3486     | 4000      | 4000        |
| Seidel     | 619      | C8Z     | rc    | 350       | 13         | 6           | 3160     | 3600      | 3600        |
| Stuckrath  | 645      | Laus.   | ds    | 240       | 82         | 22          | 186      | 190       | 220         |
| Geerling   | 55       | 1       | rc    | 250       | 3          | 17          | 565      | 595 D/10  | 600         |
| Geerling   | 55       | 2       | rc    | 250       | 3          | 18          | 421      | 324 D/10  | 400         |
| Geerling   | 55       | 3       | rc    | 250       | 3          | 20          | 989      | 1117 D/10 | 1360        |
| Geerling   | 55       | 5       | rc    | 250       | 3          | 26          | 1365     | 1215 D/10 | 1360        |
| 1996 SW Pr | oceeding | S       |       |           |            |             |          |           |             |
| Klingberg  | 290      | TP3     | cep   | 219       | 24         | 217         | 1493     | 1350      | 1350        |
| Cody       | 350      | P-2     | h     | 350       | 1          | 8           | 1802     | 2220      | 2390        |
| Cody       | 350      | P-5     | h     | 350       | 1          | 11          | 1629     | 1837      | 2109        |
| Lee        | 409      | SIP02   | ds    | 600       | 6+         | 5+          | 2811     | 2668 Dav  | 2813        |
| Lee        | 409      | SIP06   | ds    | 500       | 4-         | 5+          | 1392     | 1001 Dav  | 1373        |
| Lee        | 409      | SIP07   | ds    | 500       | 20+        | 5+          | 1934     | 1422 Dav  | 2090        |
| Lee        | 409      | SIP08   | ds    | 500       |            | 5+          | 1712     | 1128 Dav  | 1766        |
| Lee        | 409      | SIP10   | ds    | 600       | 27-        | 5+          | 1710     | 1570 Dav  | 2354        |
| Lee        | 409      | CON01   | psc   | 400       | 6+         |             | 1294     | 1040 Dav  | 1570        |
| Lee        | 409      | CON03   | psc   | 400       | 13-        |             | 2091     | 1393 Dav  | 1717        |
| Lee        | 409      | CON04   | psc   | 350       | 3+         |             | 1415     | 1099 Dav  | 1177        |
| Lee        | 409      | CON05   | psc   | 400       | 2-         |             | 1551     | 1393 Dav  | 1766        |
| Lee        | 409      | CON06   | psc   | 400       | 4-         |             | 1449     | 1079 Dav  | 1766        |
| Lee        | 409      | CON07   | psc   | 400       | 1-         |             | 1174     | 1177 Dav  | 1295        |
| Lee        | 409      | CON08   | psc   | 450       | 16-        |             | 2062     | 1668 Dav  | 1962        |
| Lee        | 409      | CON09   | psc   | 450       | 1+         |             | 2306     | 1972 Dav  | 2207        |
| Lee        | 409      | STL03   | cep   | 508       | 3-         |             | 2625     | 2374 Dav  | 2551        |
| Lee        | 409      | STL04   | cep   | 609       | 4-         |             | 2586     | 2256 Dav  | 2747        |
| Rausche    | 435      | case1   | h     | 350       |            |             | 1480     | 1420      | 1420        |
| Rausche    | 435      | case2   | psc   | 600       |            |             | 4750     | 5120      | 5120        |
| Mukaddam   | 805      | 211/125 | ds    | 750       |            |             | 3466     | 3466      |             |
| Mukaddam   | 805      | 17/56   | ds    | 500       |            |             | 1463     | 1448      |             |
| Wu         | 991      | 34/E6   | oep   | 900       | 12         | 74          | 12784    | 11607     | 12768       |
| Yong       |          | case 1  | ds    | 1000      |            | <i>,</i> -  | 8733     | 7836      | 7836        |
| 2000 SW Pr |          |         | ~···  | 1000      |            |             | 0,00     | 7850      | ,000        |
| Svinkin    | 35       | 1       | psc   | 1370      | 2          | 2           | 2450     | 1935      |             |
| Svinkin    | 35       | 2       | pse   | 1370      | 9          | 9           | 2880     | 2840      |             |

| author     | Page | pile    | pile  | dia  | CW   | SLT  | CW    | SLT       | SLTx  |
|------------|------|---------|-------|------|------|------|-------|-----------|-------|
| a · 1 ·    |      |         |       | mm   | days | days | kN    | kN        | Max   |
| Svinkin    | 35   | 3       | psc   | 1370 | 22   | 22   | 3480  | 3160      |       |
| Svinkin    | 107  | TP3     | psc   | 610  | 18   | 31   | 1672  | 1841 Dav  |       |
| Svinkin    | 107  | TP4     | psc   | 762  | 18   | 32   | 1601  | 2273 Dav  |       |
| Svinkin    | 107  | B-2     | h     | 310  | 7    | 16   | 1512  | 1400 Dav  | 2675  |
| Svinkin    | 107  | B-2     | h     | 310  | 16   | 16   | 2002  | 1400 Dav  | 2675  |
| Kirsch     | 249  | Hambrg  | conc  |      |      |      | 6000  | 6275      | 6275  |
| Seidel     | 267  | TP1     | oep   | 1200 |      |      | 5800  | 5500      | 6000  |
| Seidel     | 267  | 307     | oep   | 1200 | 25   | 52   | 19400 | 18800     | 18800 |
| Matsumoto  | 335  | Michi   | oep   | 800  | 5.5  | 29   | 4530  | 4725      |       |
| Matsumoto  | 335  | Shibata | pipe  |      |      |      | 2040  | 2165      |       |
| Xi         | 369  | DH      | ds    | 700  |      |      | 6398  | 6100      | 6100  |
| Lima       | 375  | E23     | rail  |      | 600  | 600  | 1110  | 1200 D/10 | 1200  |
| Cannon     | 393  | B19     | screw | 850  |      |      | 1809  | 1500      | 1500  |
| Cannon     | 399  | 68B     | cfa   | 600  |      |      | 2200  | 1700      | 1700  |
| Shibata    | 583  | D/S     | oep   | 400  | 6    | 6    | 2200  | 2150 D/10 | 3675  |
| Shibata    | 583  | D/S     | oep   | 400  | 30   | 30   | 2500  | 3000 D/10 | 4130  |
| Zheng      | 651  | 33      | psc   | 300  |      |      | 1863  | 1900      | 1930  |
| Zheng      | 651  | 76      | psc   | 300  |      |      | 1881  | 1900      | 2100  |
| Zheng      | 651  | 85      | psc   | 300  |      |      | 2188  | 1980      | 2170  |
| Zheng      | 651  | 113     | psc   | 400  |      |      | 2051  | 2160      | 2360  |
| Zhou       | 673  | T2      | oep   | 910  |      |      | 8303  | 10567     |       |
| Zhou       | 673  | B3a     | psc   | 600  |      |      | 8001  | 8453      |       |
| Zhou       | 673  | B3b     | psc   | 800  |      |      | 5448  | 5636      |       |
| Albuquerq. | 677  | Camp.   | psc   | 180  |      |      | 216   | 262       | 262   |
| Liu        | 683  | T2      | ds    | 800  |      |      | 12175 |           |       |
| Liu        | 683  | T4      | ds    | 800  |      |      | 11838 |           |       |
| Kormann    | 707  | CFA1    | cfa   | 350  | 130  | 90   | 877   | 1006 VV   | 986   |
| Kormann    | 707  | CFA2    | cfa   | 350  | 130  | 90   | 1700  | 1473 VV   | 1380  |
| Klingberg  | 715  | TP      | cfa-d | 450  |      |      | 1797  | 1800      | 1800  |
| Holeyman   | 725  | Long    | psc   | 350  |      |      | 1779  | 1657      | 1657  |
| Holeyman   | 725  | Short   | psc   | 350  |      |      | 919   | 965       | 965   |
| Baycan     | 751  | T5      | cfa   | 750  | 100  | 90   | 8000  | 8900      | 8900  |