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CASE METHOD

by

Garland E. Likins and Frank Rausche

Introduction

The Case Method of pile capacity determination has been used with
increasing frequency during the past ten years for both design and
construction control of impact driven piles. As an increasing amount
of static load test data became available for correlation the computa-

tion methods were modified, improved and refined.

The previous derivation of the fundamental Case Method equation
has generally been preceeded by the assumption that the pile be treated
as a rigid body. The expression resulting from the application of
Newton's Second lLaw has then been modified without a complete derivation
heing presented with only a general reference to wave equation analysis.
This type of presentation has caused the method to be criticized unjust-
ly as being based on a rigid body assumption. It will be developed here
in a brief way that will, perhaps, be more readable. Also the various
modifications which are necessary to account for different soil and

pile types are discussed,

In order to illustrate many of the characteristics of pile mechanics
a typical force and velocity record for an impact driven pile is shown
in Figure 1, where the velocity was obtained by integrating the measured
acceleration over time. Also, for ease of plotting the veloclity was
multiplied by a constant, EA/c (Young's modulus times cross sectional
area divided by the wave speed; all pile quantities}. The time scale is
given in milliseconds and in L/c units, i.e. in units of that time which

a stress wave needs to travel along a pile of length L.

This record was obtained from a 100 ft. long concrete pile driven by
a Kobe K-22 Diesel hammer. The static resistance as determined by a
load test was 470 kips which is low compared to the force at impact.

As a result the pile top force decreases at time 2L/c after impact, i.e.



when the impact wave returns after a (tension) reflection at the pile

bottom.

2 Wave Mechsanics

In the subsequent discussion it is assumed that the bar or pile
is of uniform cross section. The derivation and solution of the one
dimensional wave equation, a linear, second order differential equa-

tion, is available from other sources and will not be presented here,

Figure 1 shows one imertant phenomenon of wave mechanics,
namely the fact that force and velocity at a point on a bar are pro-
portional as long as stress waves at this point travel in only one
direction. A wave in a rod which is free at top and bottom always
has the same direction of velocity (while the sign of stress changes
upon each reflection). The proportionality between the two curves is
destroyed as soon as waves caused by soil resistance forces reach
the pile top. However, for a completely free pile the top velocity

due to a pile top force, Ft(t), can be written

C
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for 0 < t < 2L
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At times later than 2L/c the effect of waves reflected from the pile
bottom is felt at the top. Since a free top is assumed, the velocity
will be doubled under reflection and will always be positive
Therefore
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Resistance forces create .a somewhat more complex wave behavior in

a pile, since they, in general, act at intermediate locations along the

pile. A suddenly applied force at such an intermediate location produces



two waves. 1If the force, as in the case of soil resistance at a location
X, Rx(t)’ is directed upwards then the upwards traveling wave will be

in compression and the downwards traveling one in tension, For reasons
of continuity and equilibrium, together with the proportionality |
requirement between force and velocity, the forces in each wave must

have a magnitude that is one half of the applied force. The velocities

in both waves at the point of force application, X;, are:

[¢]

= R, (B 3
1

[T
™

Ve pi (8D =

Dealing again with a free pile on which this resistance force acts,
the velocities will always be directed upwards. The pile top
velocity when either of the two waves arrives and reflects will be
twice the magnitude of that in Equation 3.. The only difference
between the two waves is in the arrival time. The upwards traveling
wave arrives earlier than the other wave which is first reflected

from the bottom.

Assuning that the distributed soil resistance is concentrated
at n locations, s i=1, .,., n (xi measured from the top) whose
magnitudes are Ri’ i =1, ..., n and which are of the ideal plastic

type such that

X,
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where H(t - a) is the Heavyside step function which is 0 for t < a
{negative arguments) and 1 for t > a. With t = 0 being the time of
impact this soil resistance law implies that the resistance forces
act only after the impact wave has reached their respective location

and that they are constant thereafter.

The effect of the upwards traveling wave caused by Rx (t) is felt
at the top with a time delay xi/c, and that of the downwards traveling
wave with a delay (2L - xi)/c (after reflection at the bottom). This

means that the first effect of Rx (t) carried by the downwards traveling
i



wave is felt together with the bottom reflected impact wave at

time 2L/c after impact.

For all times one can write the top velocity due to the

upwards traveling velocity caused by Rx {t} as
i
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remembering again that because of the reflection at the free top the

wave velocity has doubled.

The downwards traveling wave causes a top velocity
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The total velocity caused by the impact force, Ft(t)’ and all n resis-

tance forces Ri’ i =1, 2, ..., n can be written as
m .
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where m indicates the time interval after impact:

m2L £ < {(m + 1) 2L
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3 Evaluation of Measurcments

If this simplified soil model for the resistance force were correct
then Vt(t] would bhe equal to VM(f) (i.e. the measured velocity) when

the measured force FM(t) was substituted for Ft(t) in Equation. 7. Thus,
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The third term in Equation 8, the summation over all resistance
forces is shown graphically in Figure 2, The first portion of the
term is due to the first arrival at the pile top of the upward travel-
ing wave due to the resistance at the location X, The full‘value
is felt at Egi after impact and stays on for the remainder of the blow
as shown by the solid bar in Figure 2. The second portion of the
term is due to the same wave after reflections from the top and bottom.
Thus, for the first and succeeding time intervals m the effects are
felt 2L/c after the preceeding interval m-1, and are represented by
the stripped bars in Figure 2. The third portion of the third term
is due to the effect of the downward traveling wave. The wave arrives
at 2L/c after impact and again remains on for the remainder of the
blow. Due to subsequent reflections the same effect is felt every
2L/c. This portion is depicted by the ﬁhite bars in Figure 2. Since
all of these effects are of equal magnitude it can be seen from Figure

2 that the third term becomes

n 2){.1 + ZmL
-3 RJ[2m+ H(E - ———)] 9
. i c
i=1

where m is the time interval. If the measured velocity is taken at any

time t*

(m %E'i t* < (m+1) %EO

and if the measured velocity at a time 2L/c later is subtracted, then the

result 1is
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Since the arguments of the Heavyside function terms both have
the same value their effects cancel. In addition the first element
of the fourth term becomes

2L 2L
- * Panive
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and combines with FM(t*) to produce ~FM{t*). The simplified expression

then becomes
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i.e. the total resistance, yields
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For a uniform rod with

c = /§7E 14

and M = LAp (p is the mass density, M the total pile mass) direct

suhstitution gives

EA Mc
o T 15
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Thus, Equation 13 ¢an also be written as
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which shows that the prediction R can be considered as an average of
two force values 2L/c apart plus an inertia term using an average
acceleration over the same time period. Equation 13a reduces to
Newton's Second Law if L becomes small enough and the pile can be
approximated by a rigid body. For larger lengths, L, where the pile

must be considered an elastic rod, Equation  13a is valid.

While the pile elastic properties and the distribution of resistance
forces were properly considered in the above derivation, the resistance
force versus time variations were neglected., These variations exist
because both dynamic resistance forces (soil damping) and unloading

(pile rebound) occur.

Originally . it was proposed to choose the time t*, yet to be
decided upon, at the time when the pile top velocity became zero. Then,
it was argued, soil damping forces would have become small., Results
obtained in this way were usually conservative when compared with the
ultimate capacity of the pile as determined in a static load test. There
was an indication, however, that a correct correlation was to be made
with a penetration related capacity (less than ultimate). This approach

has been abandoned as it is difficult to use in construction control.
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For steel pipe piles in granular soils, empirical correlation with
ultimate capacity was best when choosing t* at the time when the first

relative maximum of velocity was reached (here called the time of impact).

4 Derivation of Damping Estimate

Equation 13a has been derived using a very simple model for soil
behavior. An improvement in this model and a commonly used approximation
is to assume that the forces Ri are really made up of two portioms. The
first portion is due to static resistance forces Ri s and their sum RS is

¥
then the actual failure load. The second portion Ri d is due to dynamic

3
resistance forces (damping) which are usually treated as being proportional
to velocity. The sum of these dynamic forces RD is important only during
the driving of he pile and is of no further practical value. Thus, the

total driving resistance RT can be broken up inte two distinct portions
RT = RS + RD 16

In order to more closely approximate the pile's static capacity from dynamic
measurements, an estimate of the total damping forces RD must be made.
Because the damping effects of soil and unloading due to pile rebound
diminish the force and velocity waves in a rather short time period, only
the first 2L/c period is usually available for estimation of the maximum
damping resistance RD. Further, for most pile types the majority of both
the static soil resistance and dynamic forces have their origin at the
pile tip rather than in frictional side resistance. This hypothesis has
been confirmed by using a wave equation analysis on the dynamically measured
data and also through strain gages located along the pile length, where
readings were taken during the static load tests. The bottom velocity of

the pile for the free pile solution after the impact arrives and reflects is

v (t) = 2 v (t - ) 17

o
Olru:l.
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The effect of the downwards traveling wave caused by Rx {t} on the
bottom velocity is given by twice the magnitude of Equation " 3 due to

reflection.

v.(t)=~#RiH(t—w;__)=—MR. 18

for Eﬁ-< t < 3L .
g — — C

The pile top velocity characteristically shows a relative maximum
in the beginning of the blow (impact) and then diminishes in magnitude
with time. In cases of very easy driving, the large tip penetrations
and tensile reflections cause a large increase in pile velocity at 2L/c
after impact. In several cases the top velocity after the impact
reflection from the weak tip can become significantly larger than the
pile velocity at impact. Because piles are rarely considered acceptable
for capacity in such easy driving, they are not of great importance.
However, in the cases where they have been encountered by the project the
velocity estimates are satisfactory. The bottom velocity will reach a
is the time of impact)

relative maximum value at time t = tm + %—(tm

ax ax

and is given by

n .
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(The effect of the upward traveling wave caused by RX will be zero
i 2x

at time L/c because all Heavyside step functions H(t - L+ i) are

zera),

If the damping force is treated as proportional to this bottom

velocity then the maximum damping force hecomes

RD = bv, = J ~— vB 20

where JC is a dimensionless damping parameter (see Appendix A). TUse of

Equation 13a with t* equal to tmax gives the maximum driving resistance RT.



=-10-

Rearranging Equation 16 and using Equations 1, 12, 19 and 20 gives

the maximum static resistance RS as

RS =RF - J (F. (e ) +224¢ (¢ ) - =BT 21

¢t max ¢ £ " max

Use of Equation 21 can then be made with the measured force and velocity
functions of time and the actual failure load of the pile as determined
from a static load test (LT) to determine the correct value of JC for any
particular pile

J = RT - LD/ (F (c )+ 2y (£ ) -zrD 22

c L max ¢ t max .

The Heavyside step functions used in the preceeding derivations serve
only to simplify the algebraic manipulations., The same equations (13 and
21) for capacity and damping could be obtained using an elastic plastic
resistance law (versus the rigid plastic one used here) as commonly found
in the classical lumped mass, numerical wave equation analyses now used
extensively in the United States. The only necessary restriction is the

displacement at the time EX for location x below the measurements
t.=t*+ 32 23
x c

{where t* is the first time in Equation 13a) is greater than the soil
quake dy (the displacement where the elastic plastic soil law becomes
plastic) at location x. The time t* can be increased if necessary to
allow time for extra displacement and the condition to be satisfied,.
In most cases the time tmax does indeed provide the maximum resistance RT.
In some cases (using little cushioning or steel capblocks, small hammers
used for high resistances or other very hard driving cases, or if the soil
quakes are large, etc.) this maximum RT will occur at some time after the
peak input velocity. Automatic searches for the maximum RT capacity are
now included as standard procedure.

Later, it was found, when analyzing data from piles whose capacity

was large compared to the hammer driving capability, or which had long

lengths L (t* + 2L/c was then at a very late time) that rebound sometimes
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occurred before 2L/c after impact implying that unloading had occurred.
A technique to estimate the amount of unloading has since been included
(see Appendix B).
The only assumptions used in the derivations above for ultimate
pile capacity are
a) the pile is a uniform elastic rod with length much

greater than diameter

b) that the soil gquake is exceeded at every point along

the pile

¢) static resistance is related to pile displacement
and damping resistance to pile velocity
Violation of condition b will result in very low observed permanent set
per blow. If a meaningful rate of penetration is not achieved, the Case
Method {or any other dynamic analysis techmnique, i.e. dynamic formula,
wave equations, CAPWAP) can only be expected to indicate the soil resistance

actually mobilized.

5 Results of Damping Approach

For most piles, if the damping can be assumed to be concentrated at
the pile tip, the actual damping resistance was shown in Equation 21 to
be proportional to the pile properties (EA/c), bottom velocity (which camn
be calculated from the top velocity, pile properties and total driving re-
sistance), and a damping constant JC which is related to the soill type at
the pile tip.

Data had been obtained on over 100 test piles (as of 1977) where
static load test capacity, sufficient soil borings, and total driving
resistance RT are available.

For each pile a damping constant JC was calculated which produced a
prediction which was equal to the static load test value. 1In addition,
damping constants which produce only 20 percent error in Case Method pre-
diction were determined. Any damping constant JC chosen between these two
limiting values will give a Case Method prediction which will be in error
from the static load test value by less than 20 percent. Negative damping
constants are physically meaningless and are therefore set to zero, should

they occur. A plot of the non-negative damping constant JC within 20 percent
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of the load test value is given as a function of soil type regardless

of pile type in Figure 3. For piles with an ultimate capacity less than
150 kips, the acceptable error used was 30 kips. Measurement errors in
the dynamic and static tests as well as the type and interpretation of

the static load test failure (the Davisson failure criteria for rapid
static testing was used as the failure definition) appear to dictate,

for these low capacity piles, that an error range of 30 kips instead of

20 percent be considered acceptable. This additional range inm the accept—
able damping constant value is indicated in Figure 3 with the dashed lines.
It can be seen that as the soil grains become finer the damping constant,
JC, must become larger. This result appeared logical.

For any given soil type on any job site where a static test is also
run, a dynamic test on the static test pile will give the correct damping
constant which can then be used on all remaining dynamically tested piles
driven to the same soil stratum (see Figure 1 for sample JC adjustment).

For job sites with no static test to correlate with, the previous experi-
ences shown in Figure 3 can then serve as a guide in choosing the proper
damping constant which should yield a Case Method prediction within 20 per-
cent of the static test result with a good degree of confidence. Recommended
values are J¢ equal to 0.1 for sand, 0.15 for silty sand, 0.2 for sand silt,
0.25 to 0.4 for silt, 0.4 to 0.6 for silty clays and clayey gilt, and 0.6

to 1.0 for clay; It should be noted from Equation 21 that as the
damping constant is increased, the resulting static prediction becomes more
conservative. Thus, to assure that the Case Method is conservative, a higher
damping constant than would normally be associated with the soil type need
only be selected. It can be seen that the above recommended values are
within 20 percent or are at least conversative in all but three cases.

Two of these cases were for very low capacitypiles in silty clay which were
not production piling but rather were driven especially for project personnel
in the early stages of the project, when measurement techniques were not as
advanced. The third pile was within 25 percent. In general the results of
the Case Method using damping proportional to the pile cross section pro-
perties EA/c appear very realistic. A plot of the predicted versus measured

capacities using the Case damping constants from soil borings and Case Method
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force and velocity measurements is shown din Figure 4 and uses the above
recommended damping constants. Even better, essentially perfect agree-
ment could have been obpained using Equation 21 to obtain the proper JC
for each specific pile site. Equation 21 can also be used with total re~
sistance derived from CAPWAP analysis to obtain Jc for a site if a load
test is unavailable and the soils are fine grained.

The Case Method capacity indicates the soll resistances at the time

of testing. Setup or relaxation effects which commonly occur in soils
are evaluated by testing at the end of driving and during restrike some
time later. Care has been taken to only include cases where resistance
changes affecting the damping constant empirical correlation have been
minimized (i.e. for end of driving by running a static test as quickly as
possible using a CRP or other short interval loading program; or by re-
strike testing after sufficient wait time to allow resistance changes to
occur if correlating with lengthy load sequences). Restrike testing is
always recommended on at least one pile per job site to assess the soil's

strength changes with time and the long term service load of the pile.

6 Energy

The standard Case Method measurements of force and acceleration can
be used to determine the energy transferred into the pile from the driving
system. After integrating the acceleration to obtain velocity, the energy

can then be computed from

E = JF(t)v(t)dt 24

By comparing this measured value with the theoretical potential, manu-—
facturer's rated or kinetic energy just before impact, an energy transfer
ratio may be obtained. This ratio is the efficiency of the entire driving
system after all losses (i.e. friction, in elastic colliisions, pile cushions,
capblocks and helmets, and gas compressions) and is not the actual hammer
efficiency. It is unusual for the measured transfer ratio to exceed 70%.
Values of 40 to 60% are normal. A measured transfer ratio below 307 usually

indicates a hammer in need of maintenance.
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Sometimes transferred energy can be calculated by force or velocity alone,
making use of Equations 1 and 24. This approach is valid only if reflections
from soil resistances or cross section changes are not yet present in the
data. 1If reflections are present, Equation 24 is the only correct equation.
This usually limits this technique to only very long, uniform section, off-

shore piles with most of their length above the mudline.

7 Other Uses

The usefulness of measured force and velocity has been extended to
other uses as well as capacity and energy determinations. TFor example,
the measured forces can be inspected for their maximum ccmpression and ten=-
sion values. The force-velocity measurements can also be used to compute

the maximum tension in the pile below the point of measurements from
1 2L 2L
T(x) = (WD) - FE) - Ww(ty) - Flea) 25

where tg = tmax + 2(L - %x)/c and I = EA/c. Investigations of stresses are
useful to prevent excessive pile damage or to improve driveability if stresses
are too low.

Case Method measurements have often been used to inspect the structural
integrity of the pile. Increases in velocity relative te the force at times
before the computed 2L/c of the pile are the result of reduced cross section-
al areas or stiffnesses, which for a uniform section pile is an unmistake-
able indication of damage. The magnitude of this relative velocity increase

can be related to the amount of damage.
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APPENDIX A

Derivation of Jc

Replacing the pile by a mass-spring-damper system Newton's Second

Law becomes
m x(t) + b x(t) + k x(t) = F(t) (A1)

1f we now define (26)

and @ =
2mu n
n

b 2k
t = = (A2)

where ¢ is the viscous damping factor and b is the coefficient of

viscous damping, then

b
[ = —— (A3)
/mk
where, for the pile, the mass m is pAL and the stiffness k is %ﬂ .
Recalling Equation 3.14, the value for ¢ hecomes
_ bc
&7 ZEa (A4)
and is critically damped when
_ 2EA
ber ¥ 7% (AS)
introducing JC = 2r we get
_ EA
b = JC = (A6)

for 0 < J_< 2.
c
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APPENDIX B

UNLOADING CORRECTION FOR THE CASE METHOD OF CAPACITY PREDICTION

The Case Method of capacity prediction "measures" the resistance
(capacity) acting simultaneously. For lTong piles having a significant
portion of resistance coming from shaft friction, the Case Method may
underpredict during hard driving, i.e. when the pile top rebounds. The
pile top velocity becomes negative before the stress wave returns at
time 2L/c. When this happens, the pile top is moving upwards and some
skin resistance begins to unload.

The Case Method can be corrected in the following manner. (Refer to
the accompanying figure.) First determine the difference between the time
that the pile top velocity becomes zero and the stress wave return at 2L/c
after impact. (Note that impact must be defined at the first velocity
maxima.) This time, , multiplied by the wavespeed ¢ and divided by 2
represents the length Sf pile over which the unloading has occurred, ]

To estimate the resistance that has unloaded, one measures the skin friction
activated over the length, 1,,. This is done on the force velocity plots by

taking one half the difference between the force and velocity at time t
after impact. In the example the unloading resistance, UN, is 468 kips.

Adding UN to the RT (J=0) prediction of 767 kips gives a total driving re-

sistance of 1235 kips. The dynamic component is then subtracted.

RS = RT + UN - J{2F1 - RT - UN)

900
kips

Scales: Force 900 kips/inch .
Velocity times EA/c 900 kips/inch
Time 12.5 msec/inch
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