BACKGROUND OF CAPACITY INTERPRETATION
USING DYNAMIC PILE MEASUREMENTS

By Garland E. Likins, Jr.

Measurements taken during impact pile driving have increased dramati-
cally in the last two decades. In many sections of the world, electronic
measurements on piling jobs are now the normal procedure rather than the
exception. Their use now includes monitoring of pile stresses, hammer
energy transfer efficiency, the calculation of pile capacity for determining
criteria or quality control, and investigating the structural integrity of
pites {1,2,3). While uses other than capacity determination are very im-
portant, they are rather straightforward computationally. This paper will
therefore he addressed toward the field calculations and interpretaticns of
capacity.

The dynamics of a pile during impact can be completely defined by three
interconnected variables, namely, the forces and motions of the pile and the
boundary conditions due to the soil. Knowledge of any two of these variables
allows the computation of the third; measured pile top force and acceleration
allcw the closed form solution of soil resistance effects. Research begun at
Case Western Reserve University in the early 1960's has led to a reuseable
system for obtaining analog measurements of force and acceleration (2)
which interrupt the driving operation by typically only five minutes per pile.

For interpreting these signals an insight into one-dimensional wave
propagation is useful. The general equation of motion of a longitudinal
wave in a bar is
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with a general solution
u= f(x +ct) + fi{x - ct)
implying two waves each travelling in the opposite direction and that
cuperposition is valid. For a compression wave the particle velocity v
i< in the same direction as the velocity of wave propagation, but in a
tencion wave the velocity v is in the opposite direction. If two waves
travelling in opposite directions come togetner the resultant force is
obtained by addition and the resultant particle velocity by subtraction.
Two such identical compressive waves travelling in opposite directions
result therefore in a doubling of the stress and zero net velocity and
hence zero displacement. This condition describes a fixed end. If the
cLress waves have opposite signs the stresses cancel and the velocities
double, the free end condition. These closed form solutions for simple
boundary conditions have been available since 5t. Venant. A series of ex-
amples are given to demonstirate the dynamics of pile driving and the reader
is encouraged to find proof elsewhere (4) for important resutts.
In a uniform unsupported elastic pile, a stress wave will travel un-
changed through the rod width at a speed which can be calculated from
c = /E/p (1)
whoere E is the material modulus of elasticity and p is the mass density.
The particle velocity of some point along the pile length can therefore
be computed if it is known at some other point along the pile at a dif-
forent time. A stress wave suddenly applied at the end of a rod causes the
rod to be deformed. This deformation is transmitted along thg rod. After

time At the stress has travelled a distance ¢ at, and the end of the rod



will have displaced an amount due to the strain ¢
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Thus the input force (F = oA) at the pile top is seen to be proportional

to the input velocity by

as long as no upward travelling waves from resistance or rod end reflections
are felt. As a convention throughout the rest of this paper v will be the
particle velocity and V will be the velocity v times the pile impedance EA/c.
Let us examine the case of a pile with zero s0il resistances. The input
compressive wave 1S seen tréve]Wing down the pile in Figure la and 1b. When
the wave arrives at the bottom (Figure 1¢), the force wave reflects in ten-
<ion, and to maintain the dynamic balance the pile end accelerates again
(the velocity wave reflects with the same sign causing a doubling effect).
The wave then travels up the pile (Figure 1d). The velocity wave still has a
continually downward sign and the force is now a tension wave. In other words,
the pile is now being pulled down due to the lack of soil resistance, and this
pull is generating a tension force. When the force wave gets back to the pile
top, it again reflects now in compression being a free end, causing a net
force of zero at the pile top. The velocity again reflects with the same
<ign and travels back down the pile. The velocity at the pile top is again
doubied.
Tnotead of looking at the stress and velocity distributions in the whole

pile, we look at a particular point on the pile; the force and velocity waves



can easily be obtained. The pile top Torce velocity curves can be computed
with time as shown in Figure le. Initially force and veiocity waves are of
the same magnitude. After the initial input, the force will always be zero
due to the free ends and zero resistances. The particle velocity at the
top at every 2L/c interval (the time necessary for the stress wave to travel
from the pile top to the toe and return to the top) will become twice the
input velocity magnitude. The force and velocity with time at the pile
middle can also be computed, as shown in Figure if. There the input force
and velocity wave arrive at a time L/2c after the initial impact at the top.
Every time the wave passes the midpoint, the velocities are always the same.
[very time the wave travels upward, the forces are in tension. When the wave
rofiects from the top and travels downward the forces are in compression.

For this case with zero pile resistances and free conditions at both
the top and pile bottom, the force at a point can be computed if the veiocity
at that point is known by the equation

Fes(t) = v(t) - 2v(t - &8y au(e - ) - av(t - &

where L is the length below the known velocity location to the pile bottom.
This equation is quickly verifijed by inspection of Figures le and 1f.
fquation 3 is then known as the free pile solution; that is, the force re-
quired at a location with known velocities at that location having zero re-
sistances on the pitle.

A second analysis can be done assuming a fixed top and a fixed bottom.

In this analysis the assumption is that there is resistance at the pile ends.

The wave travelling down in Figure 2a arrives at the bottom in Figure 2b,



causing a compressive reflection of force and no pile end movement at the
bottom (the Qelocity reflects with the opposite sign cancelling the input
velocity wave). This condition will be satisfied if the resistance at the
pile bottom shows a rigid plastic behavior with a resistance at Teast equal
to twice the input force; otherwise the pile will move,violating the fixed
condition. Figure 2c shows the wave as it travels up the pile after the
fir<t reflection. The force is again 1in compression, but the velocity is
negative; the pile rebounds. At the fixed pile top, the force again reflects
in compression and superimposes on the upwards travelling initial reflection
wave, and the velocity reflects with a changed sign causing zero net dis-
placement at the pile top (Figure 2d). The pile top and pile mid-section
force and velocity waQes are shown in Figures 2e and 2f. In this case, the
force at 2L/c at the pile top, and every 2L/c thereafter, is twice the input
force magnitude and the velocity is zero at the pile top, due to the fixed
candition. At the pile middle, each passage of the wave generates a com-
pression force. The velocity is positive if the wave is travelling downward
and negative if travelling upward.

Figure 3 shows the results of a resistance force located at the pile
mid-point. For demonstration,we assign a rigid plastic resistance force of
one-half of the input force magnitude. The arrival of the input stress wave
at the pile mid-point will produce resistance waves which travel upward in
compression and downward in tension, each with half the magnitude of the re-
cistance force, or in this example, one quarter of the force input. The
offect on velocity will be to generate waves of negative sign travelling in

both ihe upward and downward directions. The net force travelling down the



pile {Figure 3b) is reduced due to the superposition of the input wave and
the generated negative resistance wave, and an upward travelling wave 1is
generated in compression. When the wave gets to the bottom (Figure 3c),
"assuming again a free bottom free top condition)the downward input force
reflects in tension. The downward tension resistance force reflects n
compression. At the same time the upward travelling compression wave re-
flects in tension. The velocities reflect with the same sign, the positive
input reflects positively and the resistance velocity waves refiect nega-
tively, and Figure 3d shows the wave's arrival at the pile top. Figure 4a
chows the pile top forces and velocities with time for this assumed re-
cistance case. Note that until a time L/c the force and velocity waves are
unaffected and the solution is similar to the free pile. After that time

the force and velocity waves separate, by a magnitude equal to the resistance
which was applied at the pile mid-point. At time 2L/c the velocities seem

to increase to the original downward input magnitude. After the initial in-
put, the force is always zero. The resuit of a free pile solution (Equation 3)
for Figure 4a is also shown in Figure 4. The difference between this free
pile solution from Equation 3 and the observed force is a measure of the re-
sistance acting on the pile. The difference, called the measured delta curve,
i the measured force minus the free pile solution. The measured delta curve
for Figure 4a is shown in Figure 4b. As observed, the measured delta curve,
at time L/c rises to a magnitude equal to the applied resistance at the pile
mid-point, and at time 2L/c rises to the magnitude of twice the resistance.
figure 5a shows an assumed measured force and velocity curve. By obtaining a
free pile solution (Figure 5b) and then a measured delta curve (Figure 5c},
the total capacity of the pile can be obtained as half the value of the

measured delta curve at time 2L/c.



A< the delta curve at time 2L/c s equal to

a(2L/c) = F(2L/c) - FPS{2L/c)
where

FPS(2L/c) = V(2L/c) - 2v(0)
thus since V equals F at impact (time 0)

a(2L/c) = F(2L/c) - (v{2L/c) - v(0) - F(0)).

As seen in Figure 5¢, the delta curve at time 2L/c is equal o twice
{he resistance. Substitution of 2RT for a(2L/c) yields

RT = {F1 + F2 + V1 - V2)/2 (4)
where 1 indicates the impact time and 2 the time 2L/c later. Equation 4
ic Lhe Case Method capacity equation (2). A quick computation with equation 4
on the free pile example shows zero resistance ((4 + 0+ 4 - 8)/2 for the top
and (4 - 4 + 4 - 4)/2 for the middle) as it should. Computation for the
fived ond case shows a resistance of twice the input force ({4 + 8 + 4 - 0)/2
equals 8 versus input 4). Although the resistance may he more this is all
that can be mobilized. Calculation for the case with side resistance gives
nalf the input force ((4 + 0 + 4 - 4)/2 equals 2 versus input 4) which is the
value we originally assigned to this resistance.

Equation 4 has often erroncously been associated with the assumption that
the soil resistances require a rigid plastic model. Such is not the case.
Square wave pulses as used here provide the easiest to understand presenta-
tions. However, the same conclusions could be made with triangle or any other
general curve. In relation to the so0il resistance assumed in Figure 3, an

elastic plastic soil law could have been used with a general input puise.



As long as the displacement reached at each point along the pile before the
arrival of the peak velocity at that point exceeds the quake (displacement
where the soil model goes plastic), Equation 4 will be valid.

The delta curve concept can be used to determine where resistances are
tocated. The value of the measured delta curve at time t before 2L/c is
equal to the sum of the soil resistances above the location x( = ct/2) on
the pile (see Figure 5c). The soil resistance between two points on a pile
ic then the difference between the measured delta curve for those points.

An example demonstrating this technique is shown in Figure 6. The
pile was a 12 inch {300mm) closed end pipe pile with a cross sectional area
of 9.8 square inches (63.2cm?) driven into silty clay. The data is from a
rostrike after a static load test. Shown with the meaéured force and veloci-
ty curves in Figure 6a are the free pile solution and measured delta curve
which has a maximum value of 363 kips (1617kN) implying a total resistance
of 181 kips (BO8kN).

In actuality the resistance in Equation 4 can be either static or damp-
ing. Fiqure 6b shows the results of applying either shear or damping re-
cistances at the pile bottom. In the case of shear, the resistance delta
curve rises and retains the static load. For the damper, the load increases
to a maximum as the wave arrives at the damper and then decreaées as the
velocity of the pile decreases. Thus the total resistance can perhaps be
separated into static and damping components by investigating what happens
to the delta curve after 2L/c.

The delta curve peak at 2L/c in Figure 6a is then probably due to veloci-

ty or damping effects. The residual value may be due to static forces.



Using the damping approach as derived elsewhere (2} with
RS = RT - J(F1 + V1 - RT)
a value for the Case Method damping constant J can be determined from the
delta curve interpretations of RS and RT. Rearranging gives
JA = (RT - RS) / (F1 & V1 - RT).

Comparison of JA with empirical J values determined from the soil borings,
can be used as a check on Case Method damping constants, thus providing an
extra degree of confidence if no further technique is availabie {i.e.
Fquation 6 can also be used with static load test results or CAPWAP total
capacity, or previous piling experience with similar local soil conditions]).

For the presented example, the static resistance is estimated at 75 kips
(334kN) based on half the residual value of the delta curve after 2L/c.
Solution of Equation 6 yield a value of 1.12 for JA which is high for the
assumed silty clay soil where an empirical J of 0.55 had been suggested for
th1§ soil type. Use of this empirical J led to a capacity of 129 kips
(575kN) whereas the static test failed at 81 kips (361kN). This data set
had been the worst case of all static-dynamic correlations cbtained to
date {2). The static resistance determined from the delta curve is in much
hetter agreement (93%) than the value obtained from the observed soil type
(159%). It is possible that the soil type was not classified correctly or
that the silt particles were very fine, almost clay particles in size.

A comparison of the skin friction as obtained directly from the measured
delta curve and from strain gages along the pile length is shown in Figure 6c.

The delta curve presented a direct measure of the RT distribution.
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By ratioing RT with RS, the forces in the pile at ultimate load are obtained
and are seen to be in excellent agreement with the loads obtained by static
testing.

Although the preceding solution technique has definite usage in skin
friction distribution, it is not so simpie to determine RS. Several factors
combine to limit the usefulness of this technique. First the skin friction

has a reducing effect on the deita curve after 2L/¢ as seen in the example
presented in Figure 4. The delta curve could be modified to convert skin
to equivalent toe resistance by
Am(t) = a{t} + a(t - 2L/c)
for times t less than 4 L/c after the initial wave onset at the top. How-
ever, this modified delta now contains all damping resistances and the time
of pile toe zero velocity (where damping is also zero) must be determined.
The time where
it - & = (1)
has been suggested (1). However the correlation of RS determined by this
technique is not as good as that obtained by other methods (2).

An additional problem is that in hard driving, the bottom velocity be-
comes negative causing unloading very early. The shear delta curve then be-
gins to look similar to that for the damper as the resistance begins unloading
(Figure 6b) so that distinguishing between the two becomes difficult.

In easy driving, Equation 8 may never be satisfied and damping there-
fore non zero. The derived RS, even if the minimum delta 1s-chosen,may
therefore be too large.

Therefore, the exact interpretation of the delta curve after 2L/t i3

difficult at best. A more rigorcus analysis such as CAPWAP is much better
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suited to sorting out static resistances from damoing. A minimum RS can
be found from the delta curve or maybe even a maximum value from the modi-
fied delta curve. Engineering judgements may often be required.

Once RS has been determined, the reduced delta curve defined by

Ar(t) = 2a{t) RS/a{2L/c)

can be used as shown in Figure 6c to produce very realistic resistance dis-

tributions.

The closed form solution to the equation of motion of a wave in an elastic

rod has been presented. Several theoretical boundary conditions have been

doscribed in detail. The Case Method capacity equation has heen informally
derived, and ways to separate static and damping resistances have been shown.

The skin friction distribution can_be estimated from the measured delta curve.
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